Abstract:
Disclosed herein is a method of delineating a second wellbore from a first wellbore. The method includes, emitting acoustic waves from a tool in the first wellbore, receiving acoustic waves at the tool reflected from the second wellbore, and determining orientation and distance of at least a portion of the second wellbore relative to the tool.
Abstract:
A method and apparatus for enhancing the moveout between a direct wave and a reflected wave. The method involves transmitting imaging signals into a body to be imaged and receiving the resulting signals propagated from the signal source. The step of receiving the propagated signals includes selectively adjusting the distance between the signal source and the signal receivers between successive signals. The method further comprises separating the reflected signals from the total received signals and enhanced stacking of the measured reflected signals.
Abstract:
The present disclosure relates to methods and apparatuses measuring a property of a material. The apparatus may include a transducer comprising a first electrical conductor, a second electrical conductor, and a piezoelectric component configured to receive the two conductors. The piezoelectric component may include a cavity dimensioned to improve the strength of or reduce stress on an interconnection between piezoelectric component and at least one of the conductors. The method may include using one or more transducers measuring a property of a material. In some embodiments, the material may be an earth formation.
Abstract:
The present disclosure is related to apparatuses and methods measuring and processing a characteristic of subsurface earth formations penetrated by a borehole. More specifically this present disclosure relates to a method and apparatus for measuring and processing an acoustic characteristic such as formation shear wave velocity of subsurface sonic waves after these waves traverse earth formations adjoining a borehole or passing through a portion of the subsurface. The apparatus may include: a bottomhole assembly, a drill bit configured to generate an acoustic signal, at least two acoustic detectors, and a processor. The acoustic signal may include a specific multipole signal that may propagate through an earth formation along the borehole. The method may include use of the apparatus, including steps for estimating a shear velocity of the acoustic signal using signals from the at least two acoustic detectors.
Abstract:
A drilling system makes measurements of at least one drilling parameter such as downhole weight on bit, bit torque, bit revolutions, rate of penetration and bit axial acceleration, and at least one measurement responsive to formation properties. One or more processors use the measurements of drilling parameters and formation properties to adjust drilling parameters.
Abstract:
A drilling system makes measurements of at least one drilling parameter such as downhole weight on bit, bit torque, bit revolutions, rate of penetration and bit axial acceleration, and at least one measurement responsive to formation properties. One or more processors use the measurements of drilling parameters and formation properties to adjust drilling parameters.
Abstract:
Evaluating casing thickness by inducing SH0 and SH1 modes of a shear wave in the casing. The SH0 group velocity and SH1 mode group velocity (Vg) are measured and the measured SH0 mode group velocity is assigned as the tubular material shear velocity (Vs). A shear wave wavelength ? from the ratio of SH0 mode frequency (f0) and the measured SH0 group velocity is estimated. The tubular thickness (d) is estimated from the estimated shear wave wavelength ?. The transmitter can be calibrated to operate at an optimum frequency.
Abstract:
Evaluating casing thickness by inducing SH0 and SH1 modes of a shear wave in the casing. The SH0 group velocity and SH1 mode group velocity (Vg) are measured and the measured SH0 mode group velocity is assigned as the tubular material shear velocity (Vs). A shear wave wavelength λ from the ratio of SH0 mode frequency (f 0 ) and the measured SH0 group velocity is estimated. The tubular thickness (d) is estimated from the estimated shear wave wavelength λ. The transmitter can be calibrated to operate at an optimum frequency.
Abstract:
A method for estimating a slowness of an earth formation, the method including: transmitting acoustic energy into the earth formation using an acoustic source; receiving the acoustic energy with an array of acoustic receivers, each acoustic receiver being configured to provide acoustic waveform data related to the received acoustic energy; transforming the acoustic waveform data into a frequency domain to provide frequency domain data; calculating a slowness-frequency coherence function using the frequency domain data; selecting slowness dispersion data from peaks of the slowness-frequency coherence function; fitting a curve to the slowness dispersion data; and estimating the slowness from the curve.
Abstract:
Disclosed herein is a method of delineating a second wellbore (26) from a first wellbore (22). The method includes, emitting acoustic waves (34) from a tool in the first wellbore, receiving acoustic waves (30) at the tool reflected from the second wellbore, and determining orientation and distance of at least a portion of the second wellbore relative to the tool.