Abstract:
The present disclosure relates to methods and apparatuses for estimating a parameter of interest of an earth formation. The method may include using an acoustic sensor azimuthally positioned relative to a monopole acoustic source to reduce at least one high- order mode due to the monopole acoustic source. The monopole acoustic source may include one or more acoustic elements. The method may include generating a monopole acoustic pulse. The apparatus may include at least one acoustic source element and at least one acoustic sensor disposed on a housing configured for conveyance in a borehole. The at least one acoustic sensor may be azimuthally positioned relative to the at least one acoustic source to reduce at least one high-order mode.
Abstract:
The present disclosure is related to apparatuses and methods measuring and processing a characteristic of subsurface earth formations penetrated by a borehole. More specifically this present disclosure relates to a method and apparatus for measuring and processing an acoustic characteristic such as formation shear wave velocity of subsurface sonic waves after these waves traverse earth formations adjoining a borehole or passing through a portion of the subsurface. The apparatus may include: a bottomhole assembly, a drill bit configured to generate an acoustic signal, at least two acoustic detectors, and a processor. The acoustic signal may include a specific multipole signal that may propagate through an earth formation along the borehole. The method may include use of the apparatus, including steps for estimating a shear velocity of the acoustic signal using signals from the at least two acoustic detectors.
Abstract:
A stepped reflector on the outside of a bottomhole assembly produces two reflections in response to excitation of a transducer. The velocity of the fluid in the borehole is estimated using the two reflections. Alternatively, a change in the gas content of the borehole fluid is estimated from changes in the electrical impedance of a transducer in contact with the borehole fluid.
Abstract:
A transducer assembly for downhole imaging includes a 1 -3 Piezoelectric composite transducer of high Q ceramic rods in a polymer matrix. The assembly also includes a Teflon® window, a fluid-filled cavity adjacent to the window, and impedance matching material between the composite transducer and the fluid. The transducer is positioned to reduce the reverberation time.
Abstract:
A method, apparatus and computer-readable medium for identifying a micro- annulus outside a casing in a cemented wellbore. The attenuation of a Lamb wave and a compressional wave is used to determine a presence of a micro-annulus between the casing and the cement.
Abstract:
Acoustic measurements made in a borehole using a multipole source are used for imaging a near-borehole geological formation structure and determination of its orientation. The signal to noise ratio (as defined by the ratio of the signal radiated into the formation to the axially propagating signal) depends upon the type of source (force or volume) and its position in the borehole (on the tool, in the fluid or on the borehole wall).
Abstract:
A method for estimating a property downhole is provided, which, in one aspect, may include receiving a core at a receiving end of a downhole tool while removing a portion of the received core distal from the receiving end of the tool, obtaining measurements by a sensor downhole, and processing the measurements to estimate the property of interest.
Abstract:
A method and apparatus for enhancing the moveout between a direct wave and a reflected wave. The method involves transmitting imaging signals into a body to be imaged and receiving the resulting signals propagated from the signal source. The step of receiving the propagated signals includes selectively adjusting the distance between the signal source and the signal receivers between successive signals. The method further comprises separating the reflected signals from the total received signals and enhanced stacking of the measured reflected signals.
Abstract:
Disclosed is a method implemented by a processor for imaging a formation penetrated by a borehole. The method includes: obtaining acoustic data in a depth-time domain using an acoustic downhole tool disposed at a depth in the borehole, the acoustic downhole tool having an acoustic source and an acoustic receiver; transforming the acoustic data in the depth-time domain into a Radon domain using a Radon transform; filtering the acoustic data in the Radon domain to increase a signal of interest in the acoustic data in the Radon domain; determining a location of a point in the formation that reflected acoustic energy emitted from the acoustic source to the acoustic receiver, the location of the point being represented in the Radon domain; and inverting the location of the point represented in the Radon domain into a radius-depth domain to image the formation.
Abstract:
Cross-dipole measurements are obtained in a borehole. By estimating a direction of polarization of the fast shear mode at low and high frequencies and comparing the estimated distances, a cause of anisotropy is established. Formation stresses and directions may be estimated.