Abstract:
The invention relates to active impedance matching systems (AIMS) and methods for increasing the efficiency of a wave energy converter (WEC) having a shaft and a shell intended to be placed in a body of water and to move relative to each other in response to forces applied to the WEC by the body of water. The system includes apparatus for: (a) extracting energy from the WEC and producing output electric energy as a function of the movement of the shell (shaft) relative to the shaft (shell): and (b) for selectively imparting energy to one of the shell and shaft for causing an increase in the displacement and velocity (or acceleration) of one of the shell and shaft relative to the other, whereby the net amount of output electrical energy produced is increased.
Abstract:
A WEC embodying the invention includes a non-circular main central column positioned within a like non-circular central opening of a shell to contain the central column and prevent rotation or twisting of the shell relative to the column. In a particular embodiment, the central column is multi-sided (e.g., a square) and the central opening of the shell is likewise multi-sided (e.g., square). The facing sides of the column and shell are parallel to each other facilitating the layout of the components of a linear electric generator (LEG) between the facing sides and ensuring good magnetic coupling between the components of the LEG over the length of travel of the shell and column.
Abstract:
A linear electric generator (LEG) includes sections of coils of an induction coil assembly (ICA) disposed along a distance d1 and apparatus for passing a per anent magnetic assembly (PMA) of length d2, where d2 is less than d1, along the coils for generating voltages and power in the coils in close proximity to the PMA. Unidirectional conducting elements are connected between the coils and output power lines to couple the voltages developed across excited coils to the output power lines without the unexcited coils loading down or dissipating the volts e developed across the output power lines.
Abstract:
A wave energy converter system comprises two floats; a first being generally flat and heaving up and down in phase with passing surface waves on a body of water, and the second being elongated and heaving up and down out of phase with the passing waves. Preferably the first float is annular with a central vertical opening therethrough, and the elongated float, with a weighted bottom end, extends vertically through the central opening of the first float. The two floats thus move out of phase with one another, thus providing a relatively large relative motion between the two floats giving rise to highly efficient energy conversion. Each float serves as a “ground” for the other; thus avoiding the need for anchoring the floats to the floor of the body of water.