Abstract:
A smartphone may be freely moved in three dimensions as it captures a stream of images of an object. Multiple image frames may be captured in different orientations and distances from the object and combined into a composite image representing an image of the object. The image frames may be formed into the composite image based on representing features of each image frame as a set of points in a three dimensional point cloud. Inconsistencies between the image frames may be adjusted when projecting respective points in the point cloud into the composite image. Quality of the image frames may be improved by processing the image frames to correct errors. Reflections and shadows may be detected and removed. Further, optical character recognition may be applied. As the scan progresses, a direction for capturing subsequent image frames is provided to a user as a real-time feedback.
Abstract:
An image processing apparatus includes a decimating unit configured to decimate pixels in a target image to obtain a decimated image containing a smaller number of pixels than the target image; an extracting unit configured to extract similar pixels at each of which a similarity to a pixel of interest is a threshold or more, from a region containing the pixel of interest among pixels of the decimated image; a first calculating unit configured to calculate a correction candidate value based on pixel values of the similar pixels; a second calculating unit configured to calculate a correction candidate value for each decimated pixel, based on the correction candidate value calculated for each pixel of the decimated image; and a correcting unit configured to correct a target pixel value of a target pixel in the target image, based on the correction candidate value calculated by the first or second calculating unit.
Abstract:
An image capturing apparatus comprises: an image sensor including a plurality of pixels each having a microlens and a plurality of photoelectric conversion means, and defective pixel detection means for detecting defective photoelectric conversion means from among the plurality of photoelectric conversion means, wherein the defective pixel detection means determines defective photoelectric conversion means by comparing an output signal output from photoelectric conversion means of a subject, sequentially taken from the plurality of photoelectric conversion means, for detection with first signals from photoelectric conversion means included in pixels neighboring the pixel including the photoelectric conversion means of the subject for detection, each position of the photoelectric conversion means included in the neighboring pixels corresponding to a position of the photoelectric conversion means of the subject for detection with respect to the microlens.
Abstract:
A method of operating a video system includes receiving an image captured by use of a fisheye lens. The image is divided into a plurality of horizontal image lines. A respective fraction of each of the horizontal image lines is sampled with a different respective sampling frequency. Each sampling frequency is inversely related to a size of the sampled fraction. The size of the sampled fraction increases with each horizontal image line in a progression from a top of the image to a bottom of the image.
Abstract:
The present invention is a method of removing the illumination and background spectral components thus isolating spectra from multi-spectral and hyper-spectral data cubes. The invention accomplishes this by first balancing a reference and sample data cubes for each spectra associated with each location, or pixel/voxel, in the spatial image. The set of residual spectra produced in the balancing step is used to obtain and correct a new set of reference spectra that is used to remove the illumination and background components in a sample data cube.