Abstract:
A robotic surgical systems and methods of operating the same are provided. The system comprises a surgical tool, a manipulator having a plurality of joints and supporting the surgical tool, and a controller. A virtual simulation represents the surgical tool as a virtual rigid body having a virtual mass including an inertia about at least one of the j oints. The controller determines an expected joint torque for the joint. The expected joint torque is compared to an actual joint torque of the joint to determine a joint torque difference. The inertia of the virtual mass about the joint is determined. An angular acceleration about the joint is computed using the joint torque difference and the inertia. The angular acceleration is projected to the virtual mass to determine an external force. The controller simulates dynamics of the surgical tool in the virtual simulation in response to the external force.
Abstract:
Computer-implemented techniques for interactively training a user in performing a predetermined task related to at least one of food safety, workplace safety and food quality using a head wearable device are provided. The head wearable device comprises a digital display positioned within a field of view of the user, a camera to capture visual data from a first-person perspective, a user input device to provide control signals, and a processor. A series of steps are visually presented on the digital display in a predetermined order to direct the user through a process of performing the task. Visual data captured by the camera and the control signals provided from the user input device are analyzed during performance of one or more steps of the task. The computer-implemented techniques evaluate the user's performance of the one or more steps based on analysis of the visual data and the control signals.
Abstract:
A sliding window assembly, a cable drive system and methods of operating the same, are disclosed. The sliding window assembly includes a guide track and a sliding window movable relative to the guide track. A heating element is coupled to the sliding window for heating the sliding window. A drum of a drive assembly rotates and includes a conductive terminal connected to a power supply of the vehicle. A cable is coupled between the sliding window and heating element and the drum. The drum rotates to mechanically wind or unwind the cable for moving the sliding window. A conductive element is coupled to at least one of the drum and the cable and is electrically connected to the cable and is movable during movement of the sliding window. The conductive element contacts the conductive terminal to provide electrical current to the cable for energizing the heating element.