Abstract:
Method for searching an item using a parametric hash filter includes forming an input vector from input data stream; forming a hash matrix having a first portion and a second portion; multiplying the hash matrix with the input vector to generate a second input vector including a hash values of the first input vector; generating a perfect hash vector and a universal hash vector, by applying a smooth periodic function to the second input vector; mapping onto a Markov random field the coordinates of locations of hash values in a search domain for which there is no possibility of collisions in the perfect hash vector to form an energy function; minimizing the energy function to generate a compressed hash table; fitting a band of acceptable locations in the compressed hash table, based on a predetermined false positive rate; and searching for a new item in the band of acceptable locations.
Abstract:
The present disclosure is drawn to loop-mediated isothermal amplification (LAMP) reaction assemblies including a substantially hygroscopic agent free LAMP reagent mixture in combination with a solid-phase reaction medium. The present disclosure also includes systems for a chromatic LAMP analysis including a substantially non-reactive solid phase reaction medium, and a non-interfering reagent mixture. The present disclosure also includes solid phase LAMP reaction mediums comprising a substrate, an adhesive layer disposed on the substrate, a reaction layer disposed on the adhesive layer, and a spreading layer disposed on the reaction layer. The present disclosure also includes methods of testing for a presence of a target nucleotide sequence including providing a biological sample, and dispensing the sample into a test environment having a solid phase reaction medium in combination with a LAMP reagent mixture and a pH sensitive dye.
Abstract:
The present disclosure is drawn to loop-mediated isothermal amplification (LAMP) reaction assemblies including a substantially hygroscopic agent free LAMP reagent mixture in combination with a solid-phase reaction medium. The present disclosure also includes systems for a chromatic LAMP analysis including a substantially non-reactive solid phase reaction medium, and a non-interfering reagent mixture. The present disclosure also includes solid phase LAMP reaction mediums comprising a substrate, an adhesive layer disposed on the substrate, a reaction layer disposed on the adhesive layer, and a spreading layer disposed on the reaction layer. The present disclosure also includes methods of testing for a presence of a target nucleotide sequence including providing a biological sample, and dispensing the sample into a test environment having a solid phase reaction medium in combination with a LAMP reagent mixture and a pH sensitive dye.
Abstract:
The present disclosure is drawn to compositions, methods, and systems for loop-mediated isothermal amplification (LAMP) analysis on a solid phase medium. The composition can comprise one or more target primers, a DNA polymerase, and a re-solubilization agent. The composition can be substantially free of non-pH sensitive agents capable of discoloring the solid phase medium. The method can comprise providing an assembly of a solid phase medium, depositing a biological sample onto the solid phase medium, and heating the assembly to an isothermal temperature sufficient to facilitate a LAMP reaction. The system can comprise a composition and a solid phase medium on to which the composition is deposited.
Abstract:
An autonomous loading/unloading system and method for transferring material includes: a buoy (106) for releasing onto water; a messenger line (108) coupled to the buoy for being pulled; a carrier line loop (110) coupled to the messenger line for being pulled, where a payload (112) is coupled to the carrier loop for transferring the material to or from an unmanned ship; a fetch/release platform (218) to fetch or release the payload from or onto the water; a loading/unloading dock for the payload; a plurality of line guides (212) for guiding the carrier loop; and a platform-to-payload interconnect (306) for autonomous loading or unloading of the material from /to the payload.
Abstract:
A receiver for cancelling strong signals from combined weak and strong signals includes: a first circuitry for inputting a weak and strong signal as an input; a parametric cancellation circuit for inputting a representation of the strong signal and an output of the first circuitry to produce a cancellation signal; a second circuitry electrically coupled to the parametric cancellation circuit for inputting the cancellation signal to produce a modulated output; a demodulator electronically coupled to the second circuitry for demodulating the modulated output to produce a demodulated output and an error signal, where the demodulated output is the data contained in the weak signal; and an adaptation logic circuit for inputting the representation of the strong signal, the demodulated output and the error signal to adaptively produce parameters for the parametric cancellation circuit. The parametric cancellation circuit further inputs the error signal and the parameters to produce the cancellation signal.
Abstract:
Photonic devices having A1 1-x Sc x N AND A1 y Ga 1-y N materials, where Al is Aluminum, Sc is Scandium, Ga is Gallium, and N is Nitrogen and where 0 is less than x and x is less than or equal to 0.45 and 0 is less than or equal to y and y is less than or equal to 1.
Abstract:
Photonic devices having A1 1 - x Sc x N and A1 y Ga 1 - y N materials, where A1 is Aluminum, Sc is Scandium, Ga is Gallium, and N is Nitrogen and where 0 is less than x and x is less than or equal to 0.45 and 0 is less than or equal to y and y is less than or equal to 1.
Abstract:
A reconfigurable aperture (200) includes a plurality of metallic particles (220) confined to a volume (216) extending across an aperture area. The metallic particles are repositioned within the volume to form opaque regions in the aperture area. The opaque regions, and transmissive regions between the opaque regions, can form a reconfigurable zone plate that can change the collimation of a microwave beam via diffraction therethrough. The zone plate can be located a fixed distance away from a microwave source and a detector in a housing, so that for any specified wavelength produced by the microwave source, the zone plate can reconfigure to have a focal length equal to the fixed distance. The reconfigurable zone plate can effectively collimate microwaves produced by the microwave source, can direct the collimated microwaves in a specified direction, can receive microwaves returning along the specified direction, and can focus the received microwaves onto the detector.
Abstract:
The systems and methods described herein relate to an airborne shooter detection system having a plurality of sensors coupled to the body of an aircraft such as a helicopter. The system includes at least five sensors configured and arranged to disambiguate the location of a shooter. By measuring the arrival times of the Shockwaves of projectiles at each of the sensors and determining the differences in the arrival times among sensors, the systems and methods may determine the location of one or more sources of the projectiles. A distance of at least ten meters separates two or more of the sensors. Such a separation is advantageous because it allows the system to disambiguate multiple shooters by resolving the curvature of the Shockwave.