Abstract:
A phase shifter, including two superconducting circuits, is provided. Each of the superconducting circuits includes at least one capacitor coupled in parallel to at least a Josephson junction and at least one inductor, where a respective inductance of each of the Josephson junctions (e.g., a first Josephson junction and a second Josephson junction) is a function of at least a current flow through each of the respective inductors. An effect of any or both of: (1) at least the inductance of the at least the first Josephson junction and (2) at least the inductance of the at least the second Josephson junction causes a phase change of a radio frequency signal received at a first terminal of the phase shifter to generate a phase-shifted radio frequency signal at a second terminal of the phase shifter.
Abstract:
The present invention relates to a phase shifter for high power signal amplifying circuits and a method for shifting phase. The shifter comprises: at least two different RF signal transmission paths (221+241+261; 222+242+262) between an input port (210) and an output port (270) of the phase shifter, wherein each transmission path is to cause different phase delay to the RF signal passing through the path with respect to the other path(s). Selecting units (Da_1, Da_2, Db_1, Db_2) connected to the transsmission paths respectively, for selecting, according to the desired phase shift for the output RF signal, from the at least two transmission paths a transmission path, through which the RF signal is practically to pass. A phase shifter applicable for high power signal is provided. Phase shifting is implemented by controlling the selecting unit.
Abstract:
Tunable notch filters and control loop systems and methods can include a tunable notch filter providing a stop band, a sensing circuit in communication with the tunable notch filter and adapted to determine a phase change between a reference signal and a signal reflected from the tunable notch filter, and a control loop in communication with the tunable notch filter and the sensing circuit, the control loop being operable to adjust the tunable notch filter to modify the phase change.
Abstract:
An embodiment of the present invention further provides an apparatus capable of reducing selected signal components in a communication link comprising a signal line conveying a communication signal including a desired signal component and at least one undesired signal component; a first signal loop coupled to the first signal line capable of generating a signal such that when combined with the first signal line reduces a first of the at least one undesired signal components; and a second signal loop coupled to the first signal line capable of generating a signal such that when combined with the first signal line reduces a second of the at least one undesired signal components. The first signal loop may include a tunable delay enabling the generation of the signal that when combined with the first signal line reduces a first of the at least one undesired signal components. Further, the second signal loop may include a tunable delay enabling the generation of the signal that when combined with the first signal line reduces a second of the at least one undesired signal components. The first of the at least one undesired signal components may be intermodulation distortion and the adding of a signal generated by the first signal loop may reduce or eliminate it. Further, a second of the at least one undesired signal components may be receive signal distortion and the adding of a signal generated by the second signal loop may reduce or eliminate it.
Abstract:
A method and device are described for generating two output signals (I; Q) each substantially identical to a square-wave input signal (A) from a local oscillator (2), wherein the first output signal (I) may have a certain time shift with respect to the input signal (A), and wherein the second output signal (Q) is shifted over T1/4 [mod T1] with respect to the first output signal (I), T1 being the period of the input signal (A). To generate the first output signal (I), Fourier components (S1((1), S3((3), S5((5), S7((7), S9((9), S11((11) etc) of the input signal are combined. To generate the second output signal (Q), Fourier components (S1((1), S5((5), S9((9) etc) of the input signal are phase shifted over +90 DEG while Fourier components (S3((3), S7((7), S11((11) etc) of the input signal are phase shifted over -90 DEG , and the thus shifted Fourier components of the input signal are combined.
Abstract:
A system for an eight-phase 45 DEG polyphase filter with amplitude matching, where a full eight-phase 45 DEG split may be achieved by tying together the inputs (V>i1 i2