Abstract:
There is provided a DC to DC converter assembly (20) for interconnecting DC electrical networks (32, 34). The DC to DC converter assembly (20) comprises: first and second converters (22, 24), each converter (22, 24) including first and second DC terminals (26, 28) for connection to a respective one of the DC electrical networks (32, 34), each converter (22, 24) including a converter limb (30) extending between the corresponding first and second DC terminals (26, 28), the converter limb (30) of the first converter (22) having a pair of first limb portions (36a, 36b) separated by a first AC terminal (40), the converter limb (30) of the second converter (24) having a pair of second limb portions (38a, 38b) separated by a second AC terminal (42), each limb portion (36a, 36b, 38a, 38b) including at least one switching element, at least one first limb portion (36a, 36b) including at least one first module (46a), at least one second limb portion (38a, 38b) including at least one second module (46b), the or each module (46a, 46b) including at least one switching element and at least one energy storage device, the or each switching element and the or each energy storage device in each module (46a, 46b) combining to selectively provide a voltage source, the or each switching element in each limb portion (36a, 36b, 38a, 38b) being switchable to switch the corresponding limb portion (36a, 36b, 38a, 38b) into or out of circuit between the corresponding AC and DC terminals (26, 28, 40, 42) to control the configuration of an AC voltage (66, 68) at the corresponding AC terminal (26, 28, 40, 42); an AC transmission link (56), the first AC terminal (40) being connected to the second AC terminal (42) via the AC transmission link (56), the first AC terminal (40) being connected at a first end of the AC transmission link (56), the second AC terminal (42) being connected at a second end of the AC transmission link (56); and a controller (65) configured to selectively control switching of the or each switching element in each limb portion (36a, 36b, 38a, 38b) to control the configuration of the AC voltage (66, 68) at the corresponding AC terminal (40, 42) to: form a current circulation path that includes the AC transmission link (56), at least one first limb portion (36a, 36b) and at least one second limb portion (38a, 38b); and inject a circulation current into the current circulation path to transfer energy between at least one first module (46a) and at least one second module (46b) in the circulation path.
Abstract:
Procédé de détection de décharge partielle dans un poste électrique isolé au gaz, dans lequel : - un spectre de fréquence des signaux détectés par un capteur UHF interne audit poste et un spectre de fréquence des signaux détectés par un capteur UHF externe audit poste sont mesurés (1, 2), - une moyenne et une variance du spectre de fréquence des signaux détectés par le capteur interne sont calculés (3), - ladite moyenne et/ou ladite variance sont comparées (4) respectivement à un seuil de moyenne et/ou de variance de sorte que, si ladite moyenne et/ou variance est supérieure ou égale au seuil de moyenne et/ou de variance : - une densité du spectre de fréquence du rapport signal sur bruit formé (5) à partir des spectres des signaux détectés par les capteurs interne et externe est calculée (6), et - un signal d'alarme (A) est généré si ladite densité est supérieure ou égale à un seuil de densité.
Abstract:
L' invention propose une structure de support (10) comportant au moins un pilier (16) cylindrique d'axe principal vertical, dont une extrémité inférieure (16i) est reliée au sol (14) et dont l'extrémité supérieure (16s) est reliée à un composant à supporter, caractérisée en ce que le pilier (16) comporte au moins une fente (20) hélicoïdale coaxiale à l'axe principal du pilier (16).
Abstract:
In one aspect, a breaker circuit arranged to isolate a converter (300, 400, 500) from a direct current network (204) in the event of a fault condition is described. The breaker circuit comprises an isolation element (104) such as a mechanical switch arranged, on activation, to prevent current flow between the network (204) and the converter (300, 400, 500) and an energy absorption element (1 12, 414, 556), capable of receiving energy remaining in the circuit following activation of the isolation element (104). Also provided is a commutating voltage source (106, 206, 570) arranged to provide a source of commutating voltage to divert current away from the isolation element (104) and a switchable isolation element bypass path (1 10) arranged to the receive the diverted current. At least one of the energy absorption element (1 12, 414, 556), the commutating voltage source (106, 206, 570) and the isolation element bypass path (1 10) is operable in a non-fault condition to provide a functional component of the converter. Converters and methods of operation thereof are also described.
Abstract:
A voltage source converter (30) comprises first and second DC terminals (32,34) for connection to a DC electrical network (58). The voltage source converter (30) further includes at least one limb connected between the first and second DC terminals (32,34), the or each limb including: a phase element (36) including a plurality of switching elements (40) to interconnect the DC electrical network (58) and an AC electrical network (50); an auxiliary sub-converter (38) configured to be controllable to act as a waveform synthesizer to modify a first DC voltage presented to the DC electrical network (58); and a tertiary sub-converter (39) connected with the phase element (36) in an electrical block, the auxiliary sub-converter (38) being connected in parallel with the electrical block, the tertiary sub-converter (39) being configured to be controllable to act as a waveform synthesizer to modify a second DC voltage presented to a DC side of the phase element (36), the tertiary sub-converter (39) including at least one energy storage device; wherein the voltage source converter (30) further includes a controller (60) configured to selectively control the or each tertiary sub-converter (39) to synthesize at least one tertiary voltage component so as to transfer energy to or from that tertiary sub-converter (39) and thereby regulate an energy level of that tertiary sub-converter (39).
Abstract:
A voltage source converter comprises: first and second DC terminals for connection to a DC electrical network; a plurality of single-phase limbs, each single-phase limb including a phase element, each phase element including a plurality of switching elements configured to interconnect a DC voltage and an AC voltage, an AC side of each phase element being connectable to a respective phase of a multi-phase AC electrical network, each single- phase limb being connected between the first and second DC terminals, each single- phase limb being controllable to generate an AC voltage at the AC side of the corresponding phase element so as to draw a respective phase current (i a ) from the multi-phase AC electrical network; and a controller configured to selectively generate a or a respective modified AC voltage demand (v conv ) for at least one single-phase limb in response to an imbalance in the plurality of phase currents (i a ) and/or a change in electrical rating of at least one single-phase limb, wherein the controller is configured to selectively control, in accordance with the or the respective modified AC voltage demand (v conv ), the or each corresponding single-phase limb independently of the or each other single-phase limb to modify the AC voltage at the AC side of its phase element and thereby modify the corresponding phase current (i a ).
Abstract:
A configurable power module (10; 80; 90; 140) comprises a first sub-module (12) which includes a first pair (18) of series-connected switching elements (20, 22) that are separated by a first connection terminal (24) and are connected in parallel with a first energy storage device (26). The configurable power module (10; 80; 90; 140) also includes a second sub-module 14 which includes a second pair 36 of series-connected switching elements (38, 40) that are separated by a second connection terminal (42) and are connected in parallel with a second energy storage device (44). The first and second sub-modules (12, 14) are interconnected by a connection module (16) which is operable to interconnect the first and second sub-modules (12, 14) in first and second connection modes. The connection module (16), in the first connection mode, establishes a parallel connection between the first and second energy storage devices (26, 44) which has bidirectional current flow characteristics. The connection module (16), in the second connection mode, interconnects the first and second energy storage devices (26, 44) to permit the first and second energy storage devices (26, 44) to charge and generate a blocking voltage to oppose the flow of current between the first and second connection terminals (24, 42).
Abstract:
La présente invention concerne un appareil électrique moyenne ou haute tension comprenant une enceinte étanche dans laquelle se trouvent des composants électriques et un mélange gazeux assurant l'isolation électrique et/ou l'extinction des arcs électriques susceptibles de se produire dans cette enceinte, le mélange gazeux comprenant de 1 'heptafluoroisobutyronitrile, du dioxyde de carbone et de l'oxygène en faibles quantités. Dans l'enceinte étanche de l'appareil électrique selon l'invention, peuvent se trouver des composants électriques recouverts d'une couche diélectrique solide d'épaisseur variable.
Abstract:
This 4.5 slots per pole and phase stator winding (20) comprises three phase windings (22, 24, 26) and is formed in a first layer (28) and a second layer (30) disposed in each slot (18 1 -18 27 ) of a stator. Each phase winding (22, 24, 26) forms at least two phase belts (34) comprising several coils turns (36). Each coil turn (36) comprises a first connecting bar (42) belonging to the first layer (28) and a second connecting bar (44) belonging to the second layer (30). For at least two phase windings (22, 24, 26), some outermost connecting bars (42 0 , 44 0 ) of a group (46, 47) of first or second connecting bars (42, 44) of at least one phase belt (32, 34) are disposed in slots (18 2 , 18 10 ) which are separated from the slots (18 4 -18 7 , 18 6 -18 8 ) which accommodate at least two other connecting bars of the same group by one slot (18 3 , 18 9 ), which accommodates an innermost (42 l , 44 l ) connecting bar of another group of first or second connecting bars of another phase belt (32; 34) of another phase winding. A single first phase winding (22) comprises at least one phase belt (32, 34) for which, all the first (42) connecting bars are disposed in adjacent slots (18 12 -18 16 ) and all the second (44) connecting bars are disposed in adjacent slots (18 23 -18 27 ).
Abstract:
On décrit ici un dispositif de régulation de l'alimentation un convertisseur photovoltaïque, comportant: une source laser (2), un convertisseur photovoltaïque (6), qui alimente un convertisseur continu-continu (8), des moyens (100) pour réguler l'impédance d'entrée du convertisseur continu-continu (8) en fonction de la tension de fonctionnement (U s ) du convertisseur photovoltaïque (6) et de sa tension à vide (U s0 ), des moyens (42) pour mesurer une tension de sortie du convertisseur continu-continu (8) et pour produire un signal de régulation (SR) de la source laser.