Abstract:
This invention relates to polymers made from low molecular weight polyamide oligomers and telechelic polyamides (including copolymers) containing N-alkylated amide groups in the backbone structure. The described telechelic polyamides are used as the soft segment in the described TPU. These telechelic polyamides are unique in that they have an unexpectedly low glass-transition (desirably 30 degrees C or lower) which makes them suitable for further reaction and polymerization, allowing for the formation of the described TPU. The resulting TPU can provide improved hydrolytic, oxidative and/or thermal stability as well as improved adhesion to other materials, especially polar materials.
Abstract:
The invention relates to a thermoplastic polyurethane fibers, and process of making the same, where the described fiber has good dyeability, and in some embodiments, good flame retardant properties. Such fibers are made from a composition that includes (a) a thermoplastic polyurethane itself comprising the reaction product of: (i) one or more polyols, (ii) one or more diisocyanates, (iii) one or more chain extenders, (iv) optionally one or more crosslinking agents, and (v) one or more functional modifiers wherein each said functional modifier is a reaction product of an aminodiol and a Bronsted acid.
Abstract:
The present invention relates to functional fluid compositions containing friction modifiers, and specifically stable compositions containing friction modifiers with limited solubility in and/or limited compatibility with the functional fluids with which they are used. In particular the present invention deals with functional fluids used in internal combustion engines, such as engine oils, and friction modifiers that contain one or more amide functional groups, where the friction modifier is present in the functional fluid composition at levels that would otherwise cause the composition to be unstable and/or hazy.
Abstract:
The present invention relates to functional fluid compositions containing friction modifiers, and specifically stable compositions containing friction modifiers with limited solubility in and/or limited compatibility with the functional fluids with which they are used. In particular the present invention deals with functional fluids used in internal combustion engines, such as engine oils, and friction modifiers derived from hydroxy-carboxylic acids, where the friction modifier is present in the functional fluid composition at levels that would otherwise cause the composition to be unstable and/or hazy.
Abstract:
The present invention relates to a synergistic combination of an antioxidant and an antiwear additive that results in improved antioxidancy performance in turbine, hydraulic, and other industrial lubricating compositions. The invention further relates to the processes to make the improved lubricating compositions and methods of their use in industrial fluids.
Abstract:
The present invention relates to a lubricating composition, particularly marine diesel engine lubricating compositions, comprising: (a) an oil of lubricating viscosity; (b) an asphaltene dispersant comprising an amide group, which may also contain a succinimide group, and which may optionally be used in combination with additional asphaltene dispersants that contain a cyclic headgroup that contains a nitrogen atoms where the additional asphaltene dispersants may also include a succinimide group; and (c) a detergent derived from an alkyl phenol. The invention further provides methods of using such compositions in the operation of engine, particularly marine diesel engines.
Abstract:
This invention relates to novel salt compositions and to explosive compositions comprising said salt compositions. The salt compositions are useful as emulsifiers in the explosive compositions. The explosive compositions are water-in-oil emulsion explosives.
Abstract:
A lubricant and concentrate composition comprises a hydroxychroman derived antioxidant and a method for improving the performance of a lubricant composition, especially a lubricant composition for an internal combustion engine, comprising the use of a lubricant containing said antioxidant.
Abstract:
The present invention relates to ammonium nitrate fuel oil mixtures, and includes compositions comprising (a) ammonium nitrate, (b) a fuel component, (c) a functionalized polymer component, and (d) an oil-soluble anionic surfactant, wherein the mixture of components (b), (c) and (d) form a gel that will not readily flow. The compositions of the present invention provide improve fuel retention and/or water resistance properties, particularly when the compositions use low quality porous prills of ammonium nitrate.
Abstract:
The invention relates to an improved food-grade-lubricant useful as hydraulic oil, circulating oil, drip oil, general purpose oil, grease base oil, cable oil, chain oil, spindle oil, gear oil, and compressor oil for equipment in the food service industry. Specifically, it relates to a composition comprising at least one polyalphaolefin base fluid, at least one food grade polyolester base fluid, and at least one food grade performance additive.