Abstract:
Systems are described. A system includes a silicon backplane having a top surface, a bottom surface, and side surfaces and a substrate surrounding the side surfaces of the silicon backplane. The substrate has a top surface, a bottom surface and side surfaces. At least one bond pad is provided on the bottom surface of the substrate. A metal layer is provided on the bottom surface of the substrate and the bottom surface of the silicon backplane and has a first portion electrically and thermally coupled to the bottom surface of the silicon backplane in a central region and second portions that extend between a perimeter region of the silicon backplane and the at least one bond pad. An array of metal connectors is provided on the top surface of the silicon backplane.
Abstract:
Methods of manufacture are described. A method includes forming a first cavity in a substrate and placing a backplane in the first cavity. At least one layer of dielectric material is formed over the substrate and the backplane. A second cavity is formed in the at least one layer of the dielectric material to expose at least a portion of a surface of the backplane. A heat conductive material is placed in the second cavity and in contact with the at least the portion of the surface of the backplane.
Abstract:
A segmented light or optical power emitting device and an illumination device are described. The segmented device includes a die having a light or optical power emitting semiconductor structure that includes an active layer disposed between an n-layer and a p-layer. Trenches are formed in at least the semiconductor structure and separate the die into individually addressable segments. The active layer emits light or optical power having a first color point or spectrum. At least one wavelength converting layer is adjacent the die and converts the light or optical power to light or optical power having at least one second color point or spectrum and limits an energy ratio of the pump light or optical power that passes through the at least one wavelength converting layer unconverted to total light or optical power emitted by the light or optical power emitting device to less than 10%.
Abstract:
Light emitting devices (LEDs) are described herein. An LED includes a light emitting semiconductor structure, a wavelength converting material and an off state white material. The light emitting semiconductor structure includes a light-emitting active layer disposed between an n-layer and a p-layer. The wavelength converting material has a first surface adjacent the light emitting semiconductor structure and a second surface opposite the first surface. The off state white material is in direct contact with the second surface of the wavelength converting material and includes multiple core-shell particles disposed in an optically functional material. Each of the core-shell particles includes a core material encased in a polymer or inorganic shell. The core material includes a phase change material.
Abstract:
An LED lighting strip, method of manufacturing an LED lighting strip and an automotive lighting system are described. The LED lighting strip (100) includes at least two outer wires (12, 14), at least one central wire (15) between the two outer wires, LEDs (22) arranged along the LED lighting strip and electrically coupled at least to the at least two outer wires (12, 14), and an enclosing member (52) enclosing the at least two outer wires, the at one central wire and the LEDs. The at least two outer wires (12, 14) and the least one central wire (15) have a bend (51) in sections between at least some adjacent LEDs (22).
Abstract:
An LED retrofit signaling lamp is described herein. The lamp includes a lamp body, which includes a cap, a projection part, and a burner part between the cap and the projection part. Power contacts are exposed from the cap. A projection LED light source is provided in the projection part and angled to provide a projected image near to the vehicle when activated. A signaling LED light source is provided in the burner part angled to emit non-projected light via the projection part at angles that avoid the emitted light being blocked by the projection LED light source. The projection LED light source and the signaling LED light source are electrically coupled to the power contacts in parallel to each other.
Abstract:
A composite array has two two-dimensional arrays on a substrate each having two rows of LEDs. The LEDs in each array have the same orientation as all other LEDs in that array. First electrical traces sequentially couple LEDs in the first string and the second string by beginning at opposite corners of the composite array and alternating between rows of each of the first and second arrays. A second electrical trace couples ends of the first and second strings across rows of the composite array. Third electrical traces route outside the composite array and are coupled, respectively, to a beginning of the first string for the row of the composite array containing the beginning of the first string, a beginning of the second string for the other row, the end of the first LED string for the other row, and electrodes of LEDs in the other row.
Abstract:
Methods and apparatus for supporting adaptive quality of service (QoS) in sidelink relays are described. A wireless transmit/receive unit (WTRU) includes a transceiver and a processor. The transceiver and the processor receive a configuration, from a wireless network, the configuration indicating an initial first hop latency budget for communications via a relay WTRU. They also receive one or more packets from a higher layer and receive an indication from the relay WTRU. The transceiver and the processor also determine an updated first hop latency budget based at least on the received indication.
Abstract:
An automotive lighting system for a vehicle includes a light source, a refraction lens and a projection lens. The light source includes a first sub light source. The refraction lens includes a light entrance surface and a light exit surface. The light entrance surface has a first protrusion that has a first light entrance face adjacent the first sub light source and a first light exit face on the light entrance surface of the first refraction lens. The first protrusion is located at a periphery of the light entrance surface of the refraction lens with respect to an optical axis of the automotive lighting system.
Abstract:
An LED bulb includes a center ring, a burner and an elastic component. The center ring includes a central opening, a first flat rim extending along a first part of an outer edge of the central opening, and a first notch cut-out beyond the central opening at an end of the first flat rim. The burner is disposed at least in part in the central opening and includes a first pin that has a first flat side face. The elastic component is configured to press the first flat rim of the center ring against the first flat side face of the first pin of the burner.