Abstract:
An optical component includes: a calcium fluoride substrate including an atomically-smooth substrate surface that forms at least a portion of an optically-interacting surface; and a sealant layer covering the atomically-smooth substrate surface to thereby form a smooth interface between the calcium fluoride substrate and the sealant layer. A profile roughness parameter Ra of the atomically-smooth substrate surface defined as a mean deviation of a profile of the atomically-smooth substrate surface is within a range of 0.01 nanometers (nm) to and including 0.17 nm.
Abstract:
A method is performed for scheduling a calibration relating to an optical device in a light source. The method can be performed by a calibration system including a calibration apparatus and a prediction controller. The method includes: receiving a property associated with the optical device while the optical device is being calibrated; calculating a current degradation metric based at least on the optical device property, the degradation metric modeling behavior of the optical device; estimating when a degradation of the optical device would exceed a threshold based on the current degradation metric; and scheduling a calibration of the optical device based at least in part on the estimate of optical device degradation.
Abstract:
A laser source includes a laser chamber configured to generate a first laser beam. The laser source further includes an optical system coupled to the laser chamber and configured to receive the first laser beam and output an output laser beam. The laser source also includes a gas purge system. According to some aspects, the gas purge system is configured to supply a nitrogen gas into the optical system at a pressure less than atmospheric pressure. According to some aspects, the gas purge system is configured to supply a helium gas into the optical system.
Abstract:
Excimer laser comprising a discharge chamber (12) and a conductive member (22) for conducting a current associated with an electric discharge in a discharge chamber of a laser, the conductive member comprising at least one channel (26a-26d) configured for increasing a current flow path in an end part (32, 34) of the conductive member relative to a current flow path in central part (34) of the conductive member, the conductive member configured for connecting the laser to a voltage source (24) and to provide an interface between the voltage source and the discharge chamber of the laser.
Abstract:
Disclosed is a source for and method of generating extreme ultraviolet radiation in which spitting of molten target material is hindered through depletion of the number of hydrogen radicals available to enter deposits of molten target material and create hydrogen bubbles therein by introducing an active gas that reacts with the hydrogen radicals.
Abstract:
A method includes driving, while producing a burst of pulses at a pulse repetition rate, a spectral feature adjuster among a set of discrete states at a frequency correlated with the pulse repetition rate; and in between the production of the bursts of pulses (while no pulses are being produced), driving the spectral feature adjuster according to a driving signal defined by a set of parameters. Each discrete state corresponds to a discrete value of a spectral feature. The method includes ensuring that the spectral feature adjuster is in one of the discrete states that corresponds to a discrete value of the spectral feature of the amplified light beam when a pulse in the next burst is produced by adjusting one or more of: an instruction to the lithography exposure apparatus, the driving signal to the spectral feature adjuster, and/or the instruction to the optical source.
Abstract:
A gas chamber supply system includes a gas source configured to fluidly connect to a gas chamber and to supply a gas mixture to the gas chamber, the gas source including: a pre-prepared gas supply including a gas mixture, the gas mixture including a plurality of gas components and lacking a halogen; a recycled gas supply including the gas mixture; and a fluid flow switch connected to the pre-prepared gas supply and to the recycled gas supply. The gas chamber supply also includes a control system configured to: determine if the relative concentration between the gas components within the recycled gas supply is within an acceptable range; and provide a signal to the fluid flow switch to thereby select one of the pre-prepared gas supply and the recycled gas supply to as the gas source based on the determination.
Abstract:
A system for removing particulate matter from the gas in a gas discharge laser includes one or more nonwoven screens which are optimized for, among others, manufacturability and feature integration. The nonwoven screens are configured for precisely directing the flow to optimize the separation of particles from the gas flow and provide sufficient surface area for improved dust adherence.
Abstract:
Provided is a method and wireless communication system that includes a HetNet, a serving cell with an associated coverage area and multiple additional low power nodes (LPNs) deployed in one or more clusters of cells in the coverage area. The LPNs transmit an associated discovery signal based on the timing of the associated small cell. The serving cell is configured to determine the timing of the cells and therefore the transmission pattern of the discovery signals and the serving cell configures measurement gaps such that the discovery signals are transmitted during the measurement gaps. The network is adapted to accomplish this for various degrees of granularity and timing measurement inaccuracies by placing the measurement gaps and/or adjusting the discovery signal (DS) transmission scheme accordingly.
Abstract:
Provided is a synchronization cell used in a wireless communication system. Also provided is an SCI, synchronization cell indicator. A mobile network includes a processor that identifies one or more suitable synchronization cells for a user equipment (UE) and sends the SCI to the UE so that the UE can at least partially synchronize with a synchronization cell. The SCI advantageously includes a cell-id and other synchronization parameters and characteristics in various embodiments. The SCI may include a cell-directed UE action for the UE to carry out with a target cell. The UE carries out cell-directed UE actions with the target cell either after having obtained synchronization with the synchronization cell or to continue the synchronization process.