Abstract:
Methods and systems are provided for managing electrical power consumption in a mobile phone or other portable communications device having a battery and a display. A series of views forming a flow are retrieved from a memory or other digital storage device for presentation on the display. For each of the views in the flow, performance information relating to the portable communications device is determined while the view is displayed, and this information is stored in the digital storage medium. Upon subsequent retrieval of each view from the digital storage medium, configuring the operation of the portable communications device in response to the stored performance information to thereby manage the electrical power consumption of the portable communications device.
Abstract:
A data processing system having a memory for storing instructions and several central processing units for executing instructions, each central processing unit includes an adaptive power supply which provides, among other data, temperature information. Circuitry is provided that receives the temperature information from the many central processing units, selects a central processing unit which has the lowest temperature and which is available to execute instructions and dispatches instructions to the selected central processing from the memory.
Abstract:
A power system couples to a multi-core processor to provide power to the processor. The power system throttles at least one of the cores of the processor when the power that the processor consumes from thepower systemexceeds a predetermined threshold power. The power systemmay reduce the rate of instruction issue by a particular core or clock gate a particular core to provide power throttling. The power system dynamically responds to variance of the actualoutput voltage that processor circuitryreceives from the power system in comparison to an expected output voltage over time and corrects for such variance.
Abstract:
A device and a method for managing power consumption of a plurality of data processing units. A scheduler (280) schedules a first process step for a first data processing unit (200) consuming a high power within a first deadline and a second process step for a second data processing unit (240) also consuming a high power within a second deadline. The scheduler further schedules the first process step and the second process step such that the two process steps do not occur concurrently thereby reducing the peak power draw from a power supply whilst preserving deadlines. This is particularly beneficial in battery-operated equipment, such as portable electronic multimedia devices, since peak power drain has been found to be an important factor in determining the battery capacity.
Abstract:
Described is a method which includes receiving a selection of an application type, selecting a power management class as a function of the application type and adjusting resources of a mobile unit as a function the power management class.
Abstract:
Techniques for conserving power by controlling program execution in a convergence device comprising a battery or other power source and at least one processor. The processor is configured to perform processing operations associated with voice call communication functions and to perform processing operations associated with data communication functions, and is operative to execute critical programs and noncritical programs. The convergence device stores, for at least a given one of a plurality of noncritical programs associated with the data communication functions, an identifier of at least one alternate capacity program capable of performing substantially the same function as the given program but having a different power source capacity associated therewith. Based at least in part on a power indicator representative of remaining capacity or another characteristic of the power source, execution of the given program may be replaced with execution of the alternate capacity program, such that an amount of power source capacity utilizable for the voice call communication functions is increased.
Abstract:
The present invention provides apparatus and methods to perform thermal management in a computing environment. In one embodiment, thermal attributes are associated with operations and/or processing components, and the operations are scheduled for processing by the components so that a thermal threshold is not exceeded. In another embodiment, hot and cool queues are provided for selected operations, and the processing components can select operations from the appropriate queue so that the thermal threshold is not exceeded.
Abstract:
Method for reducing power consumption in a multimode device is disclosed. The multimode device includes a COMM1 component and a COMM2 component. In one aspect, a COMM1 component may be a UWB component and a COMM2 component may be a CDMA component. According to a disclosed embodiment, the time for a next scheduled COMM1 wakeup process to be performed by a COMM1 module is established. Thereafter, if the next COMM1 wakeup process is scheduled to be performed before the next COMM2 wakeup process, a COMM2 wakeup process is synchronized to be performed by a COMM2 module at the same time as the next COMM1 wakeup process. Following, when the time arrives for the COMM1 module to perform the next COMM1 wakeup process, the COMM2 module also performs the COMM2 wakeup process.