Abstract:
Methods and compositions are disclosed that comprise cement kiln dust having a mean particle size that has been altered. An embodiment discloses a subterranean treatment method comprising: introducing a treatment fluid into a subterranean formation, wherein the treatment fluid comprises cement kiln dust having a mean particle size that has been altered from its original size by grinding, separating, or a combination thereof. Another embodiment discloses a subterranean treatment method comprising: introducing a treatment fluid into a subterranean formation, wherein the treatment fluid comprises cement kiln dust having a mean particle size that has been reduced from its original size.
Abstract:
Of the many compositions and methods provided herein, one method includes a method comprising: contacting tar resident in a well bore with a tar stabilizing polymer comprising at least one polymer selected from the group consisting of a styrene polymer, an acrylate polymer, a styrene-acrylate polymer, and any combination thereof; and allowing the tar stabilizing polymer to interact with the tar to at least partially reduce the tendency of the tar to adhere to a surface.
Abstract:
Methods and compositions are provided that related to cementing operations. Methods and compositions that include pumice and/or perlite as a replacement for fly ash.
Abstract:
The present disclosure relates to gravity feeding coiled tubing (CT) into a live well. A method may include gravity feeding the CT into the live well having a wellhead, a line in fluid communication with the wellhead, a CT stripper and pressure control equipment (PCE) disposed above the wellhead, and a safety valve disposed below the wellhead, the method comprising: injecting a fluid through the line and into the wellbore to displace reservoir fluid positioned above the safety valve such that at least a portion of the reservoir fluid is forced below the safety valve; closing the safety valve; releasing pressure from between the PCE and the safety valve via the line; gravity feeding the CT into the wellbore; isolating pressure between the PCE and the safety valve; manipulating pressures on both sides of the safety valve; opening the safety valve; and gravity feeding the CT past the safety valve.
Abstract:
Systems and methods of the present disclosure relate to isolating a setting chamber of an actuating assembly from tubing pressure. The actuating assembly comprises a cylinder; a mandrel disposed within the cylinder, the cylinder operable to move along the mandrel; a piston disposed between the cylinder and the mandrel, the piston operable to move along the mandrel in a direction opposite to that of the cylinder; a chamber disposed adjacent the piston, wherein the mandrel includes a port operable to allow fluid to pass into the chamber from the mandrel; and a spring disposed adjacent to the piston, the spring operable to expand, upon release of pressure from the chamber, to move the piston to seal the port and isolate the cylinder from pressure within the mandrel.
Abstract:
Multicomponent data are acquired using a downhole acoustic tool having transmitters and receiver stations distributed azimuthally in a plane perpendicular to the axis of the tool. The receiver stations are located at several receiving stations along the axis of the tool. At each acquisition depth, waveforms are processed through a multi-dimensional fast Fourier transform, extrapolation and inverse multi -dimensional fast Fourier transform. At each receiver station, waveforms are combined to produce the standard monopole waveforms and the inline and crossline dipole waveforms along fixed azimuths. These oriented waveforms produce a finer azimuthal sampling of the surrounding formation, and can then be used for imaging geological features within the surrounding formation.
Abstract:
A vibration-damping sub is provided to mitigate shock and other sources of vibration in a tool string. In examples, a tubular damping body is rigidly coupled between a vibration-sensitive tool and a vibration source. The tubular damping body includes a tubular wall defining a plurality of shaped holes configured to dampen the mechanical vibration to below the design threshold for the vibration-sensitive tool. The tubular damping body may also include different portions having different materials and impedances to further disrupt the propagation of mechanical waveforms.
Abstract:
The present disclosure generally relates to a standalone gas extraction and detection system comprising a gas extraction chamber operable to receive a wellbore fluid and a carrier gas; a gas detection chamber in fluid communication with the gas extraction chamber, the gas detection chamber comprising reflective surfaces operable to receive infrared radiation (IR) and an extracted gas sample from the gas extraction chamber; an open-path detector operable to detect the IR in the gas detection chamber; and a shaft extending through the gas extraction chamber and the gas detection chamber of the standalone gas extraction and detection system.
Abstract:
A method for assessing and/or removing one or more motion effects from logging while drilling (LWD) measurement data may include disposing a borehole logging tool into a borehole, wherein the borehole logging tool is disposed on a bottom hole assembly (BHA), taking one or more measurements at one or more depth in the borehole with the borehole logging tool to form a measurement data set, and identifying one or more pipe breaks and one or more stations in the measurement data set. The method extracts measurement data at one or more pipe breaks and one or more stations to form a non-motion measurement data set, providing answer products from the non-motion measurement data set. The method may further include removing the one or more pipe breaks and one or more stations from the measurement data set to form a corrected measurement data set and providing one or more answer products.
Abstract:
Systems and methods of the present disclosure relate to protecting a control line as it passes through a junction in a downhole environment. An ETJ deployment tool (ETJDT) comprises a tool body comprising a central bore; at least one first component and at least one second component, each component operable to extend and retract laterally from the tool body, wherein the at least one second component is disposed at an axial distance from the at least one first component along the tool body; a member disposed within the central bore and operable to move forward upon receiving fluid; and a spring disposed axially between a portion of the member and the at least one second component.