VERFAHREN ZUM BETREIBEN EINES FAHRZEUGS MIT UMFELDSENSOREN ZUM ERFASSEN EINES UMFELDS DES FAHRZEUGS, COMPUTERLESBARES MEDIUM, SYSTEM, UND FAHRZEUG

    公开(公告)号:WO2019211067A1

    公开(公告)日:2019-11-07

    申请号:PCT/EP2019/059064

    申请日:2019-04-10

    Inventor: ROSKOPF, Andre

    Abstract: Die Erfindung betrifft ein Verfahren zum Betreiben eines Fahrzeugs mit Umfeldsensoren zum Erfassen eines Umfelds des Fahrzeugs, das Verfahren umfassend: Erfassen des Umfelds des Fahrzeugs mittels eines jeweiligen Umfeldsensors, wobei der jeweilige Umfeldsensor Rohdaten bereitstellt, die dem Umfeld des jeweiligen Umfeldsensors entsprechen; Bestimmen von vorgegebenen Merkmalen aus den Rohdaten des jeweiligen Umfeldsensors des Fahrzeugs; Bestimmen eines oder mehrerer Objekte des jeweiligen Umfeldsensors basierend auf den bestimmten, vorgegebenen Merkmalen der Rohdaten des jeweiligen Umfeldsensors; Fusionieren der bestimmten Objekte der Umfeldsensoren; Erkennen einer Verkehrssituation basierend den fusionierten Objekten; Trainieren eines maschinellen Lernverfahrens basierend auf den Rohdaten der jeweiligen Umfeldsensoren bezüglich der erkannten Verkehrssituation; Lernen eines neuen Merkmals aus den Rohdaten des jeweiligen Umfeldsensors mittels des trainierten, maschinellen Lernverfahrens für die erkannte Verkehrssituation; Erweitern der vorgegebenen Merkmale der Rohdaten des jeweiligen Umfeldsensors mit dem gelernten, neuen Merkmal; Bestimmen der erweiterten Merkmale aus den Rohdaten des jeweiligen Umfeldsensors des Fahrzeugs; Bestimmen eines oder mehrerer Objekte des jeweiligen Umfeldsensors basierend auf den bestimmten, erweiterten Merkmalen der Rohdaten des jeweiligen Umfeldsensors; Fusionieren der bestimmten Objekte mit den erweiterten Merkmalen der jeweiligen Umfeldsensoren; und Erkennen der Verkehrssituation basierend auf den fusionierten Objekten mit den erweiterten Merkmalen.

    LEARNING OPTIMIZER FOR SHARED CLOUD
    72.
    发明申请

    公开(公告)号:WO2019190941A1

    公开(公告)日:2019-10-03

    申请号:PCT/US2019/023777

    申请日:2019-03-23

    Abstract: Described herein is a system and method for training cardinality models in which workload data is analyzed to extract and compute features of subgraphs of queries. Using a machine learning algorithm, the cardinality models are trained based on the features and actual runtime statistics included in the workload data. The trained cardinality models are stored. Further described herein is a system and method of predicting cardinality of subgraphs of a query. Features for the subgraphs of the query are extracted and computed. Cardinality models are retrieved based on the features of the subgraphs of the query. Cardinalities of the subgraphs of the query are predicted using the retrieved cardinality models. One of the subgraphs of the query is selected to be utilized for execution of the query based on the predicted cardinalities.

    OPTIMIZING QUBIT OPERATING FREQUENCIES
    74.
    发明申请

    公开(公告)号:WO2019168544A1

    公开(公告)日:2019-09-06

    申请号:PCT/US2018/020696

    申请日:2018-03-02

    Abstract: Methods, systems, and apparatus for determining frequencies at which to operate interacting qubits arranged as a two dimensional grid in a quantum device. In one aspect, a method includes the actions of defining a first cost function that characterizes technical operating characteristics of the system. The cost function maps qubit operation frequency values to a cost corresponding to an operating state of the quantum device; applying one or more constraints to the defined first cost function to define an adjusted cost function; and adjusting qubit operation frequency values to vary the cost according to the adjusted cost function such that the operating state of the quantum device is improved.

    KNOWLEDGE SYSTEM
    75.
    发明申请
    KNOWLEDGE SYSTEM 审中-公开

    公开(公告)号:WO2019141853A1

    公开(公告)日:2019-07-25

    申请号:PCT/EP2019/051407

    申请日:2019-01-21

    Inventor: SCHLOER, Hardy

    CPC classification number: G06Q90/00 G06F16/30 G06N5/00

    Abstract: Computer-implemented method of handling super large quantities of incompatible types of data sets and records in a common environment, comprising the following steps: applying real-time analytics and multi-view information objects to these data sets and records according to a predetermined analytics model; dynamically tracking the combined results of the real-time analytics across multiple contexts and problem domains; in parallel updating the analytics model continuously and accurately.

    A SYSTEM AND METHOD FOR A KNOWLEDGE ANALYSIS TOOL

    公开(公告)号:WO2019135124A1

    公开(公告)日:2019-07-11

    申请号:PCT/IB2018/059699

    申请日:2018-12-06

    Abstract: In accordance with one embodiment of the disclosure, a system and method for a knowledge analysis tool is provided. The system includes a memory module configured to store a database, which includes a plurality of questions. The system also includes an input display module configured to display the plurality of questions, and also configured to receive a plurality of answers. The system also includes a learner access module configured to provide a plurality of learners with a channel to access the plurality of questions. The system further includes an automated analysis and evaluation module configured to receive the plurality of answers, and also to analyse and evaluate the plurality of answers in real-time, to compute an aggregated knowledge level of a plurality of learners. The system further includes a results display module configured to receive the aggregated knowledge level of the plurality of learners and also configured to display a relative assessment of the aggregated knowledge level of the plurality of learners. The system also includes a remote server module configured to communicatively couple the aforementioned modules with one another via a communication network.

    USING RANDOM WALKS FOR ITERATIVE PHASE ESTIMATION

    公开(公告)号:WO2019112915A1

    公开(公告)日:2019-06-13

    申请号:PCT/US2018/063496

    申请日:2018-11-30

    CPC classification number: G06F17/16 G06N5/003 G06N7/005 G06N10/00

    Abstract: The disclosed technology concerns example embodiments for estimating eigenvalues of quantum operations using a quantum computer. Such estimations are useful in performing Shor's algorithm for factoring, quantum simulation, quantum machine learning, and other various quantum computing applications. Existing approaches to phase estimation are sub-optimal, difficult to program, require prohibitive classical computing, and/or require too much classical or quantum memory to be run on existing devices. Embodiments of the disclosed approach address one or more (e.g., all) of these drawbacks. Certain examples work by using a random walk for the estimate of the eigenvalue that (e.g., only) keeps track of the current estimate and the measurement record that it observed to reach that point.

    COST FUNCTION DEFORMATION IN QUANTUM APPROXIMATE OPTIMIZATION

    公开(公告)号:WO2019105873A1

    公开(公告)日:2019-06-06

    申请号:PCT/EP2018/082495

    申请日:2018-11-26

    Abstract: Techniques for performing cost function deformation in quantum approximate optimization are provided. The techniques include mapping a cost function associated with a combinatorial optimization problem to an optimization problem over allowed quantum states. A quantum Hamiltonian is constructed for the cost function, and a set of trial states are generated by a physical time evolution of the quantum hardware interspersed with control pulses. Aspects include measuring a quantum cost function for the trial states, determining a trial state resulting in optimal values, and deforming a Hamiltonian to find an optimal state and using the optimal state as a next starting state for a next optimization on a deformed Hamiltonian until an optimizer is determined with respect to a desired Hamiltonian.

Patent Agency Ranking