Abstract:
A power metering device includes a tap unit including a clamp for engaging a coaxial cable and a probe for electrically coupling to a center conductor of the coaxial cable without damaging the center conductor. A power consumption meter and a power port are electrically connected to the probe. A power transformer is optionally connected between the probe and the power port. A housing surrounds the meter and transformer. The power port supplies power to a customer device, and the meter measures an amount of power passing through the power port. The power consumed by the customer device is reported by the meter to a modem within the housing. The modem may utilize the probe and the center conductor of the coaxial cable to send power consumption data to a service provider, so that an operator of the customer device may be billed and/or the customer device may be controlled to limit its power consumption. Further, the modem may transfer data between the customer device and the service provider.
Abstract:
A tool for a cable winding machine includes a plate and at least one clamp assembly mounted to the plate. The clamp assembly includes a clamp pad movable toward and away from the plate between a clamped position and a released position. A shaft is secured to the center of the plate. The tool can be part of a cable winding machine that secures to a spool. The end of the cable can be releasably clamped between the clamp pad and the plate.
Abstract:
One embodiment is directed to a method of tracking, using an automated infrastructure management (AIM) system, connections made using a breakout cable. The breakout cable comprises a plurality of breakout connectors at a breakout end of the breakout cable. The method comprises identifying a sequence for adding or removing connections involving the breakout connectors of the breakout cable, identifying events associated with adding or removing connections involving the breakout connectors of the breakout cable, and associating the breakout connectors of the breakout cable with added or removed connections based on the identified sequence and the identified events. Other embodiments are disclosed.
Abstract:
A slide assembly for slidably coupling a telecommunications tray to a telecommunications chassis includes a rail configured for mounting to the chassis, the rail defining a rail sliding cavity flanked by a first detent adjacent a first end and a second detent adjacent a second end of the rail, the rail further comprising first and second chassis mounting features, the first and the second chassis mounting features are oriented with respect to each other such that if two of the same rails are aligned and brought together in a juxtaposed relationship with the first and second chassis mounting features facing each other, the first and the second chassis mounting features can nest relative to each other so as to not increase the total width of the two rails. A guide configured for mounting to the telecommunications tray defines a guide sliding cavity configured to slidably receive the rail such that the rail sliding cavity and the guide sliding cavity face each other, the guide defines a pin connected thereto via a flexible cantilever arm, at least a portion of the pin extending into the rail sliding cavity when the rail and the guide are in a sliding relationship for latching by the first and second detents of the rail in providing two predetermined stop positions for the guide.
Abstract:
A multi-member cable (51) includes at least a first cable element (53) and a second cable element (54). The first and second cable elements (53, 54) twist around a center axis of the cable (51) in a counterclockwise direction multiple times to a first reversal point, then twist about the center axis of the cable (51) in a clockwise direction multiple times until a second reversal point, with this pattern repeating along a length of the cable (51). Adhesion points are formed at intervals along a length of the cable (51) to connect the first and second cable elements (53, 54). The adhesion points may be spaced apart at an interval equal to a distance between the first and second reversal points. An outer surface of a jacket (69) of the cable (51) may include indications at the first and/or second reversal points, such as physical bumps or markings.
Abstract:
Communications plugs are provided that include a housing that receives the conductors of the communication cable. A printed circuit board is mounted at least partially within the housing. A plurality of plug contacts are on the printed circuit board, and the printed circuit board includes a plurality of conductive paths that electrically connect respective ones of the conductors to respective ones of the plug contacts. First and second of the conductive paths are arranged as a first differential pair of conductive paths that comprise a portion of a first differential transmission line through the communications plug, where the first differential transmission line includes a first transition region where the impedance of the first differential transmission line changes by at least 20% and a second transition region impedance of the first differential transmission line changes by at least 20%.
Abstract:
A fiber optic connector includes a ferrule for holding a plurality of optical fibers. The ferrule has a first end and a second end. A plurality of optical fibers enter at the first end of the ferrule and extend to the second end of the ferrule, wherein ends of the plurality of optical fibers are approximately flush or slightly protruding along a mating face defining the second end of the ferrule. A lens frame (21) has a front surface (23) and a back surface (25), wherein the back surface abuts the second end of the ferrule. Lenses (37) are formed in the lens frame, wherein each lens of the plurality of lenses overlies a flush or protruding end of one of the plurality of optical fibers. Optionally, a film, mounted to a frame, is disposed between the ends of the plurality of optical fibers and the plurality of lenses. A first alignment sleeve (27) has a pin (33).
Abstract:
Upstream noise suppression circuits include a splitter and a combiner that are connected by first and second communications paths. An information signal removal circuit is provided on the second communications path and is configured to remove an upstream information signal therefrom. A phase shifter is also provided on the second communications path between the upstream information signal removal circuit and the combiner.
Abstract:
A cable includes a jacket surrounding a cable core. The cable core includes four twisted pairs. One or more S-shaped separators are disposed amongst the twisted pairs. The S-Shaped separators may be formed with two layers or three layers, wherein at least one layer is conductive. Where two S-shaped separators are disposed within the cable, a third conductive tape may be used to electrically connect the first and second S-shaped separators. In alternative embodiments, one or both ends of an S-shaped separator make electrical contact to mid-portions of the separator to create one or two shielding cambers within the cable.
Abstract:
A cable includes a jacket surrounding a cable core. The cable core includes four twisted pairs. One or more separators may optionally be disposed amongst the twisted pairs. The cable may optionally include a non conductive core wrap, and/or the cable may optionally include an outer conductive shielding layer wrap. One of more of the twisted pairs, the core wrap, the shielding layer wrap, the separator or the jacket includes an antistatic additive, in the form of a coating or material ingredient.