Abstract:
Die Erfindung betrifft Verfahren zur Herstellung einer Bipolarplatte (40) für eine Brennstoffzelle, wobei auf einen Grundträger (52) mittels eines additiven Fertigungsverfahrens ein Profil (50) aufgebracht wird, welches eine Medienverteilerstruktur (45) bildet. Die Erfindung betrifft auch eine Brennstoffzelle, die mindestens eine Bipolarplatte (40) umfasst, die nach dem erfindungsgemäßen Verfahren hergestellt ist.
Abstract:
Flow batteries can be constructed by combining multiple electrochemical unit cells together with one another in a cell stack. High-throughput processes for fabricating electrochemical unit cells can include providing materials from rolled sources for forming a soft goods assembly and a hard goods assembly, supplying the materials to a production line, and forming an electrochemical unit cell having a bipolar plate disposed on opposite sides of a separator. The electrochemical unit cells can have configurations such that bipolar plates are shared between adjacent electrochemical unit cells in a cell stack, or such that bipolar plates between adjacent electrochemical unit cells are abutted together with one another in a cell stack.
Abstract:
연료전지 스택의 발전 효율을 극대화함과 더불어, 수소 소모량을 감소시킬 수 있는 연료전지 분리판 및 이를 갖는 연료전지 스택에 대하여 개시한다. 본 발명에 따른 연료전지 분리판은 채널부 및 매니폴드부를 갖는 분리판 몸체; 및 상기 분리판 몸체의 채널부에 배치되며, 제1면으로부터 제2면으로 돌출된 반응가스 유로;를 포함한다.
Abstract:
A fuel cell system with planar manifold having at least one fuel cell assembly with a first side and a second side: a plurality of anodes on the first side; a plurality of cathodes on the second side; ion-conducting electrolyte between the first and second sides; a fluid manifold assembly fluidiy connected to the first side. In the planar manifold a first barrier layer provides at least one inlet port in fluid communication with a hydrogen source, and at least one outlet port to remove any unreacted hydrogen and byproducts from the first side; a plurality of conduit layers, on at least one of which is disposed one or more channels fluidiy connected to the at least one inlet port and one of which is fluidiy connected to the at least one outlet port; and, a second bamer layer disposed above the plurality of conduit layers containing a plurality of perforations affixed to the first side to supply hydrogen gas.
Abstract:
L'invention concerne une pile à combustible (10) comprenant un assemblage membrane/électrode (16) et deux couches de diffusions gazeuses (14), formant avec l'assemblage une cellule élémentaire (12). La pile (10) comprend aussi un diffuseur thermique diphasique (24) comprenant une zone de condensation et une zone d'évaporation, la zone d'évaporation étant disposée entre les plaques bipolaires (14) de deux cellules élémentaires (12) adjacentes. Le diffuseur thermique diphasique (24) comprend en outre un élément chauffant disposé dans la zone de condensation. L'invention concerne également un système comprenant la pile à combustible et un contrôleur ainsi qu'un procédé de régulation thermique de la pile à combustible.
Abstract:
A fuel cell having a cathode, cathode chamber, anode and anode chamber. The anode chamber is at least partially defined by an anode current collector. The cathode chamber is at least partially defined by the cathode. The anode chamber includes one or a plurality of anode flow channels for flowing an electrolyte in a downstream direction. The anode current collector may include a plurality of particle collectors projecting into the anode chamber to collect particles suspended in the electrolyte.
Abstract:
In some examples, solid oxide fuel cell system including a tubular substrate defining a fuel flow cavity within the tubular substrate; a plurality of solid oxide fuel cells on a surface of the tubular substrate, each cell including an anode electrode, a cathode electrode, and electrolyte, wherein the anode electrode, cathode electrode, and electrolyte are configured to form an electrochemical cell, wherein, during fuel cell during operation, fuel flows within the fuel flow cavity of the tubular substrate along a fuel flow direction from an inlet to an outlet of the fuel flow cavity, and wherein a permeability of the tubular substrate to the fuel varies along the fuel flow direction.
Abstract:
Die Erfindung betrifft eine Bipolarplatte (10) für eine Brennstoffzelle (100), umfassend - ein internes Kühlmittelströmungsfeld (33), welches einen Kühlmittelkanal (43) umfasst, und - eine erste und eine zweite Flachseite (11, 12) mit einem ersten bzw. zweiten Reaktantenströmungsfeld (31, 32), welches wenigstens eine erste bzw. zweite Kanalstruktur (41, 42) aufweist, wobei - die erste und die zweite Kanalstruktur (41, 42) jeweils einen Stammkanal (44) und Astkanäle (46) ausbilden, wobei die Astkanäle (46) in einem Verästelungsbereich (48) von dem jeweiligen Stammkanal (44) abzweigen, und zwischen den Astkanälen (46) der ersten Kanalstruktur (31) ein erster Zwischenbereich (51) und zwischen den Astkanälen (46) der zweiten Kanalstruktur (32) ein zweiter Zwischenbereich (52) ausgebildet wird, wobei sich Normalprojektionen des ersten und des zweiten Zwischenbereichs (51, 52) auf eine Mittenebene (56) der Bipolarplatte (10), welche zwischen den beiden Flachseiten (11, 12) der Bipolarplatte (10) angeordnet ist, teilweise überlappen, sodass ein Überlappungsbereich (53) gebildet wird. Es ist vorgesehen, dass sich der Kühlmittelkanal (43) von einem Außenbereich (54), welcher sich außerhalb des ersten und zweiten Zwischenbereichs (51, 52) befindet, in den Überlappungsbereich (53) erstreckt, indem er dabei einen Transitbereich (55) durchquert, wobei der Transitbereich (55) ein Teilbereich der Normalprojektion des ersten Zwischenbereichs (51) auf die Mittenebene ist, welcher aus dem Überlappungsbereich (53) herausragt.
Abstract:
The invention relates to an electrochemical fuel cell stack, comprising at least one membrane-electrode unit (MEA) consisting of an anode, a cathode and an electrolyte membrane which is located between them, at least one gas distributor structure on the anode side, comprising an anode gas inlet area, an anode gas outlet area and channels for guiding the anode gas from the anode gas inlet area to the anode gas outlet area, said anode gas containing hydrogen and being un-wet or partially wet; at least one gas distributor structure on the cathode side, comprising a cathode gas inlet area, a cathode gas outlet area and channels for guiding the cathode gas from the cathode gas inlet area to the cathode gas outlet area, the cathode gas containing oxygen and being un-wet or partially wet; and a coolant distributor structure, comprising a coolant inlet area, a coolant outlet area and channels for guiding the coolant from the coolant inlet area to the coolant outlet area. According to the invention, the coolant inlet area and the cathode gas inlet area overlap each other at least partially. The coolant outlet area and the cathode gas outlet area also overlap each other at least partially, so that a temperature gradient with a temperature that increases from the inlet area to the outlet area can form along the coolant and cathode gas channels between the overlap areas in inlet and outlet areas.
Abstract:
The invention relates to a fuel cell unit with a fuel cell stack with improved reaction gas utilisation by means of variable mass transfer coefficients within the stack. The reaction gas utilisation is optimised by means of matching and shaping of the process gas stream distribution channels, such that the laminar flow in the smooth channels is turned into a turbulent flow and thus an increase in the mass transfer coefficient beta in the back end of the stack occurs. According to a preferred embodiment, pole plates, tripping edges and deflectors are provided in the distribution channels, by means of which the main direction of flow may be diverted to the active cell surfaces.