Abstract:
A method for wireless communication is described herein. The method may include advertising support by a wireless device for a first bandwidth mode and a second bandwidth mode, wherein the first bandwidth mode utilizes a single channel and the second bandwidth mode utilizes channel bonding between a plurality of channels. The method may also include switching a current bandwidth mode of the wireless device from one of the bandwidth modes to the other of the bandwidth modes and adjusting a number of multiple-input, multiple-output (MIMO) spatial streams supported by the wireless device in response to the switching.
Abstract:
Embodiments are provided for guard band utilization for synchronous and asynchronous communications in wireless networks. A user equipment (UE) or a network component transmits symbols on data bands assigned for primary communications. The data bands are separated by a guard band having smaller bandwidth than the data bands. The UE or network component further modulates symbols for secondary communications with a spectrally contained wave form, which has a smaller bandwidth than the guard band. The spectrally contained wave form is achieved with orthogonal frequency-division multiplexing (OFDM) modulation or with joint OFDM and Offset Quadrature Amplitude Modulation (OQAM) modulation. The modulated symbols for the secondary communications are transmitted within the guard band.
Abstract:
A dynamic spectrum arbitrage (DSA) system includes a dynamic spectrum policy controller (DPC) and a dynamic spectrum controller (DSC) that together dynamically manage the allocation and use of resources (e.g., spectrum resources) across different networks. The DSC component may include wired or wireless connections to eNodeBs, a policy and charging rules function (PCRF) component/server, and various other network components. The PCRF may be configured to receive eNodeB congestion state information from the eNodeB, information identifying wireless devices attached to the eNodeB, categorize each of the identified wireless devices into a category selected from a plurality of categories, select a subset of the identified wireless devices based on the category into which they are categorized, and perform congestion response operations on the selected wireless devices so as to reduce the congestion of the eNodeB.
Abstract:
The techniques introduced here provide for efficient mass handover from a shared-spectrum wireless communication system (e.g., Licensed Shared Access, Authorized Shared Access, Cloud Spectrum Services, or the like) to a target system (e.g., 3GPP LTE, or the like). The techniques further provide for efficient handling of transitions from one shared-spectrum allocation period to the next shared-spectrum allocation period. Additionally, the techniques provide for efficient handling of multi-operator transitions to re-licensed or re-negotiated shared-spectrum allocations.
Abstract:
A method in a base station (105) for assisting in a coordination of frequency band selections for interfering uplink transmissions in a cellular network (100) is provided. The base station selects a first frequency band (41) and a second frequency band (42). The first frequency band (41) is to be used in the first cell (110) for uplink transmissions from which an estimated interference in a second cell (115) exceeds a first threshold. The second frequency band (42) is to be used in the first cell (110) for uplink transmissions from which an estimated interference in a third cell (120) exceeds a second threshold. The base station (105) informs a serving base station of the second cell (115) and a serving base station of the third cell (120) about the selection, thereby assisting these base stations in coordinating their respective frequency band selection with that of the base station (105).