Abstract:
A method of plating a metallic substrate to achieve a desired surface coarseness includes: plating a metallic substrate with a source metal using a plating solution containing the source metal to produce a plated layer; and during said plating, varying at least one of multiple plating parameters to achieve a value of a coarseness metric of a surface of the plated layer above a minimum predetermined target value of the coarseness metric. Determining a value of a coarseness metric of a plated layer on a metallic substrate includes obtaining a magnified image of a surface of a plated layer recorded by a magnification device; identifying a path across the magnified image that crosses a plurality of pixels; and determining a contrast among the plurality of pixels.
Abstract:
A method of neutron enriching a portion of a sample includes applying phonons to a first side of a sample, thereby transferring neutrons from first nuclei within the sample to second nuclei within the sample, whereby the second nuclei are enriched with the transferred neutrons. An apparatus for neutron enriching a portion of a sample includes a phonon source in contact with or mechanically coupled to a first side of a sample, the phonon source configured to apply phonons to the first side of the sample, thereby transferring neutrons from first nuclei within the sample to second nuclei within the sample, whereby the second nuclei are enriched with the transferred neutrons.
Abstract:
An electrolytic method of loading hydrogen into a cathode includes placing the cathode and an anode in an electrochemical reaction vessel filled with a solvent, mixing a DC component and an AC component to produce an electrolytic current, and applying an electrolytic current to the cathode. The DC component includes cycling between: a first voltage applied to the cathode for a first period of time, a second voltage applied to the cathode for a second period of time, wherein the second voltage is higher than the first voltage, and wherein the second period of time is shorter than the first period of time. The AC component has a frequency between about 1 Hz and about 100kHz. The peak sum of the voltages supplied by the DC component and AC component is higher than the dissociation voltage of the solvent.
Abstract:
An exothermic reaction chamber includes at least one of an annular sleeve hosting a hydrogen-absorbing metal, and an electrode having either an outer diameter greater than 50 percent of the reaction chamber bore diameter, perturbations formed on the electrode outer surface, or both. The anode-to-cathode distance may be varied by controlling either or both of the thickness of the annular sleeve and the electrode diameter. Perturbations on the electrode outer surface, which facilitate electrical discharge, may be formed by winding wire around the electrode in a helical pattern, by machining the electrode, or by drilling holes through the electrode and inserting metal rods having pointed or rounded tips into the holes. Both by reducing the anode-to-cathode distance and via perturbations on the outer surface of the electrode, electrical discharge is enhanced. Electrical discharge may drive more hydrogen (deuterium) ions into the hydrogen-absorbing metal, enhancing the efficiency of exothermic reactions.
Abstract:
Methods and apparatus are disclosed for triggering an exothermic reaction in an electrolytic cell using two lasers configured at pre-determined triggering frequencies. The triggering frequencies are determined based on one or more resonant frequencies characteristic of the metal hydride coated on one of the electrodes of the electrolytic cell. Excess power output in the range of 200 through 500 mW is observed when an exothermic reaction is triggered in a dual laser electrolytic cell.
Abstract:
Methods and apparatus are disclosed for triggering an exothermic reaction under a high hydrogen loading rate. It is generally understood that a high hydrogen loading ratio is an important factor. The present application teaches that a high hydrogen loading rate, that is, achieving a high hydrogen loading ratio in a short period of time, is another important factor in determining whether excess heat can be observed in an exothermic reaction. The present application discloses methods and apparatus for achieving a high hydrogen loading rate in order to trigger an exothermic reaction.
Abstract:
An exothermic reaction of hydrogen/deuterium loaded into a metal or alloy is triggered by controlling the frequency of a hydrogen/deuterium plasma in a reaction chamber. The plasma frequency is controlled by adjusting its electron density, which in turn is controlled by adjusting the pressure within the reaction chamber. An exothermic reaction is generated at certain discrete plasma frequencies, which correspond to the optical phonon modes of D-D, H-D, and H-H bonds within the metal lattice. For example, in palladium metal, the frequencies are 8.5 THz, 15 THz, and 20 THz, respectively.
Abstract:
Printed circuit board and/or semiconductor wafer fabrication techniques and technologies are applied to create anode and cathode electrodes for exothermic reaction chambers and processes. Starting with an appropriate substrate, e.g., ceramic, anodes and cathodes of varying shapes and spaced relationships, formed of the reactive materials required, may be fabricated on the same or different layers as conductive traces. In some embodiments, the shapes and placement of the traces, and use of one or more ground planes, may optimize the generation of magnetic fields as current passes through the traces. In some embodiments, an iron core may shape and/or enhance the strength of magnetic fields. In general, the use of PCB/IC fabrication technology allows the manufacture of electrodes for exothermic reactions that are rugged, made from appropriate materials, and have known and repeatable impedances, spaced relationships, magnetic coupling, and other properties.
Abstract:
A low cost and versatile plate reactor is capable of producing exothermic reactions under a wide variety of conditions using a wide variety of materials. The reactor design can be used to test various combinations of materials and triggers for exothermic reactions quickly. The reactor design can be used for solid-state materials, wet-cells/electrolytic materials, plasmas, and gases. The design will work with nanoparticles, solid materials, materials plated to a reactor wall, heavy water, or other liquid materials, and gases.
Abstract:
A low cost and versatile plate reactor is capable of producing exothermic reactions under a wide variety of conditions using a wide variety of materials. The reactor design can be used to test various combinations of materials and triggers for exothermic reactions quickly. The reactor design can be used for solid-state materials, wet-cells/electrolytic materials, plasmas, and gases. The design will work with nanoparticles, solid materials, materials plated to a reactor wall, heavy water, or other liquid materials, and gases.