Abstract:
A traffic split transmission ("TST") system capable of transmitting a data flow via multiple communication networks is disclosed. The TST system, in one aspect, includes a receiver, a link selector, a split unit, a tag module, and a delay module. The receiver obtains a data flow containing one or more packets with a destination at a user terminal ("UT"). The link selector fetches link characteristics associated with the current status of available links. The split unit splits the data flow into a first and a second packets. The tag module generates tags for the first and the second packets. The delay module is configured to delay transmission of a selected packet(s) so that the first packet and the second packet can arrive at UT at approximately the same time.
Abstract:
Described herein are systems and methods that dynamically manage network traffic for individual subscribers based on past and current data usage rates. The disclosed systems and methods operate to control data traffic for a group of subscribers that share a common access network or that share a common access link to an access network. Prior to an individual subscriber reaching their data plan limit, the disclosed systems and methods track individual subscribers past and current data rates and manage individual subscribers current usage rates so that each subscriber's continually or periodically updating past usage rate stays within a provisioning rate for the group. This can improve user experience because rather than waiting until a subscriber has reached their plan data limit to impose strict data usage restrictions, the disclosed systems and methods use modest restrictions continuously or intermittently during the plan period.
Abstract:
Described herein are hybrid adaptive networks (HAN) that enable the use of multiple, independent communications networks as a unified communications system. The disclosed HAN includes multiple communications networks that user terminals can simultaneously access. The disclosed HAN enables a user terminal to seamlessly roam across multiple communications networks. The disclosed HAN can increase the capabilities and resilience of user terminals by providing simultaneous access to multiple communications networks. For example, these communications networks may span multiple orbital regions, operate over multiple frequency bands, provide independent terrestrial infrastructure, and/or feature different network management and cyber defense implementations thereby providing inherent diversity and removing single points of failure and/or targets for attack.
Abstract:
Embodiments provide techniques for providing return-link routing in a hybrid communications network that includes a number of different networks having different characteristics. User terminal routing systems (UTRSs) provide interfaces between local user networks and the multiple communications networks of the hybrid network. Each UTRS can include a routing table having stored mappings that are populated according to forward-link communications (implicitly or explicitly), each associating a respective one of a plurality of routing table entries with one of the communications networks. When a UTRS receives return-link data from its respective local user network, the received data indicates a destination node. The UTRS can determine which of the stored mappings corresponds to the destination node and can route the received return-link data over a selected one of the communications networks in accordance with the identified one of the mappings.
Abstract:
In anticipation of a client device establishing a connection over a network with a remote host service, a pre-connect module generates a connection request (referred to herein as a "pre-connect request") on behalf of the client device and sends the pre-connect request to the remote host server. The remote server responds with a connection response (referred to herein as a "pre-connect response"), which is pre-positioned on the client-side of the network along with information for generating a later connection request that is in material respects the same as the pre-connect request. Then, when the client device later seeks to establish a connection with the remote host server, the client device determines whether it has in local storage generation information for generating a connection request to the remote host server. If so, the client device uses the generation information to generate a connection request that is in material respects the same as the pre-connect request. An interceptor on the client-side of the network intercepts connection requests and determines whether a corresponding pre-connect response is locally stored. If so, the interceptor sends the locally stored pre-connect response as a complete response to the intercepted request, which can be discarded.
Abstract:
An AMC antenna apparatus includes a ground plane and a flexible antenna element layer above the ground plane. The ground plane includes a conductive base surface, a plurality of flexible conductors, and a frequency selective surface (FSS) layer above the base surface, where the FSS layer includes a plurality of conductive patches separated from one another. Each of the flexible conductors electrically connects one of the conductive patches to the base surface. A latch mechanism is arranged between the base layer and the FSS layer. An inflatable bladder system between the base layer and the FSS layer is configured to receive a gas input during deployment of the antenna apparatus and inflate to produce force sufficient to cause the latch mechanism to transition from an unlatched state to a latched state in which the conductive base surface is fixedly separated from the FSS layer at a predetermined distance.
Abstract:
Described herein are systems and methods for traffic classification that integrate a plurality of different types of traffic classifiers in parallel so that there is little or no adverse effects on data path performance. The systems and methods also integrate a plurality of complementary tiered classifiers to improve or enhance the results of a primary classification technique. Results from the individual parallel and tiered traffic classifiers can be analyzed to determine an output classification. The resulting output traffic classification can be used to determine a preferred or desirable link between nodes on a network where the network includes parallel links or network paths between the nodes. The disclosed systems and methods may be particularly advantageous where the different network paths have different characteristics such as latency, capacity, congestion, cost, bandwidth, etc.
Abstract:
Described herein are systems, devices, and methods that improve network communication on a high-latency network by using a low-latency network to manage return-link bandwidth. Embodiments of the systems described herein include a user terminal that is communicatively coupled to a high-latency network and a low-latency network. The user terminal is configured to communicate with a gateway routing device over the low-latency network. The user terminal requests return-link bandwidth and the gateway routing device provides a transmission schedule to the user terminal over the low-latency network. The user terminal can be configured to transmit a message over the high-latency network using the scheduled return-link bandwidth.
Abstract:
Methods and systems for individual forward-link and return-link policies for network communication are disclosed. In some aspects, the individual forward-link and return-link policies define how data is routed over a plurality of access networks between a client-side enforcement unit and a provider-side enforcement unit. In some aspects, the individual policies may be based on metrics collected by the client-side and provider-side enforcement units, which may be positioned on each end of one or more access networks.
Abstract:
An artificial magnetic conductor (AMC) antenna apparatus includes a ground plane and a flexible antenna element layer above the ground plane. The ground plane includes a conductive base surface, a plurality of memory metal wires, and a frequency selective surface (FSS) layer above the base surface, where the FSS layer includes a plurality of conductive patches separated from one another. Each of the memory metal wires electrically connects one of the conductive patches to the base surface. Each of the memory metal wires is rigid in a memory-shaped state, causing the FSS layer to be fixedly spaced from the base surface during operation of the AMC antenna apparatus. The memory metal wires are each flexible in a non-memory-shaped state, enabling the FSS layer to be collapsed towards the base surface when the antenna apparatus is stowed.