Abstract:
A pallet sled includes a base and a pair of tines extending from the base. A load wheel supports outer ends of each of the tines. A wheel supports the base. At least one motor is configured to drive the base wheel or at least one of the load wheels for driving the pallet sled. The motor may be a hub motor inside the base wheel or the load wheel.
Abstract:
A method of fabricating ultrasound bone phantom material compatible with magnetic resonance imaging (MRI) is provided. The bone phantom material has ultrasound and physical parameters that are characteristic of human cortical and trabecular bones, and is well suited for the fabrication of bone phantoms intended for the development and testing of ultrasound medical diagnostic imaging techniques as well as high-intensity focused ultrasound (HIFU) therapy methods and other MRI imaging applications.
Abstract:
An on-vehicle device for a driver monitoring system can be configured to be isolated from the vehicle bus while connected to the vehicle's OBD port. In a fully-isolated mode, the device only receives power and ground from the vehicle's OBD port and there is no other communication sent or received from the vehicle bus. In a passive mode, the device can obtain some information from the vehicle bus but does not request any information on the vehicle bus. The device may be undetectable on the vehicle bus. Optionally, the device receives commands via a communication interface to be switched among the three modes: fully active mode, fully isolated mode and passive mode. The commands may come from a server and may be communicated over the internet or over a cell network to a communication module on the device.
Abstract:
An opportunistic calibration method continuously monitors a smartphone orientation and compensates for its variation, as necessary. The method relies on the probabilistic fusion of built-in sensors; in particular, the GPS, accelerometer, gyroscope, and magnetometer. The calibration method may utilize a state-machine approach along with an orientation stability detection algorithm to keep track of the smartphone orientation over time and to coordinate the calibration process in an opportunistic manner. An orientation calibration method may rely mainly on the probabilistic fusion of GPS and magnetometer sensory data.
Abstract:
A vehicle monitoring system includes at least one sensor in the vehicle. A processor receiving information from the at least one sensor, the processor programmed to automatically identify a driver of the vehicle based upon the information from the at least one sensor.
Abstract:
A system and method for tracking and tracing motions of multiple incoherent sound sources and for visualizing the resultant overall sound pressure distribution in 3D space in real time are developed. This new system needs only four microphones (although more could be used) that can be mounted at any position so long as they are not placed on the same plane. A sample configuration is to mount three microphones on the y, z plane, while the 4th microphone on a plane perpendicular to the y, z plane. A processor receives signals from the microphones based on the signals received from noise sources in unknown locations, and the processor determines the locations of these sources and visualizes the resultant sound field in 3D space in real time. This system works for broadband, narrowband, tonal sound signals under transient and stationary conditions.
Abstract:
A tracking device is incorporated into a band, such as a watch band or bracelet. The tracking device appears as an ordinary band, but cannot be removed by the individual wearing it. If necessary, the location of the tracking device can be determined by a central server and reported to the authorities or to the individual's family.
Abstract:
A rack for securing containers includes a plurality of bays into which one or more containers are received. The rack includes an upper section and a lower section defining a bay therebetween. The bay has a concave support surface for supporting an object. A plurality of columns connect the upper section to the lower section. The upper section and the lower section each include a plurality of complementary interlocking members aligned with the plurality of columns, such that the interlocking members on the upper section would interlock with the interlocking members on the lower section of a similar rack stacked thereon. Each bay may include a resilient member, such as an expandable clamp or a resilient bumper.
Abstract:
A system for analyzing noise sources correlates the sound pressure level value at any field point to the acoustic energy directly flowing out of any individual panel of a vibrating structure. This acoustic energy flow or acoustic intensity depicts how sound radiates and in which direction a sound wave propagates in the field. Therefore, the result represents a true contribution of an individual panel to an acoustic field. The acoustic intensity on the surface of a vibrating object is reconstructed by the Helmholtz equation least squares (HELS) based nearfield acoustical holography (NAH). The acoustic intensity is utilized to establish correlations between user-designated panels and the SPL value at any field point. With this information users can rank the order of contributions from individual panels of any vibrating structure to an acoustic field. These order ranking and panel contribution analyses help engineers to come up the best strategy to tackle various noise issues in the most cost-effective manner. The method is applicable to both interior and exterior regions.
Abstract:
A system provides an in situ or non-invasive vibro-acosutic (VA) analysis of an arbitrary complex vibrating structure. The major advantages of this system are that: (1) it allows for an identification of the VA modes that are directly responsible for structural vibration and sound radiation; (2) it enables one to acquire a quantitative description of contributions from individual VA modes that are responsible for resultant structural vibration and sound radiation; and (3) it is non-invasive so that one can conduct an in situ analysis of a machine running under its natural working condition. With this information, one can tackle noise and vibration problems in the most cost-effective manner.