Abstract:
Methods of operating a memory device are disclosed. A method may include receiving, at a first die of a number of dies, a first number of bits including one or more command bits, one or more identification bits, and a first number of address bits associated with a command during a first clock cycle. The method may further include conveying, from the first die to at least one other die, at least some of the first number of bits. Further, the method may include receiving, at the first die, a second number of bits including a second number of address bits associated with the command during a second, subsequent clock cycle. Also, the method may include conveying, from the first die to the at least one other die, at least some of the second number of bits. Memory devices and electronic systems are also disclosed.
Abstract:
Methods of operating a memory device are disclosed. A method may include receiving, at a first die of a number of dies, a first number of bits including one or more command bits, one or more identification bits, and a first number of address bits associated with a command during a first clock cycle. The method may further include conveying, from the first die to at least one other die, at least some of the first number of bits. Further, the method may include receiving, at the first die, a second number of bits including a second number of address bits associated with the command during a second, subsequent clock cycle. Also, the method may include conveying, from the first die to the at least one other die, at least some of the second number of bits. Memory devices and electronic systems are also disclosed.
Abstract:
Systems, devices, and methods are described for controlling, and communicating with, unmanned aerial vehicles (UAVs) over a millimeter wave (mmWave) communication network established between a base station and the UAVs. A communication system may include one or more unmanned aerial vehicles (UAVs). The communication system may further include one or more base stations including millimeter wave (mmWave) antennas configured to generate control signals to the one or more UAVs over an mmWave communication network.
Abstract:
Systems, devices, and methods are described for controlling, and communicating with, unmanned aerial vehicles (UAVs) over a millimeter wave (mmWave) communication network established between a base station and the UAVs. A communication system may include one or more unmanned aerial vehicles (UAVs). The communication system may further include one or more base stations including millimeter wave (mmWave) antennas configured to generate control signals to the one or more UAVs over an mmWave communication network.
Abstract:
Various embodiments relate to data packet compensation in multi-device media systems. A secondary headphone device may include one or more communication interfaces configured to communicate with a primary headphone device over a first wireless communication link. The secondary headphone device may also include a sniffer configured to capture one or more data packets communicated from a media source to the primary headphone device over a second wireless communication link. Further, the secondary headphone device may include communication logic configured to provide reporting information about the captured one or more data packets to the primary headphone device. The communication logic may also receive one or more reply messages from the primary headphone device via the first wireless communication link. The at least one reply message of the one or more reply messages indicating whether or not the sniffer captured each data packet communicated from the media source to the primary headphone device.
Abstract:
The present disclosure is directed to denture devices and related technology. A device may include an overdenture including a substructure comprising at least one hinge. The device may further include a dental implant prosthesis configured to be attached to a jawbone and including at least one extensions configured for contacting the at least one hinge of the overdenture to secure the overdenture to the dental implant prosthesis.
Abstract:
Methods, devices, and systems are disclosed for a memory cell having a floating body. A memory cell may include a transistor over an insulation layer and including a source, and a drain. The memory cell may also include a floating body including a first region positioned between the source and the drain, a second region positioned remote from each of the source and drain, and a passage and extending through the insulation layer and coupling the first region to the second region. Additionally, the memory cell includes a bias gate at least partially surrounding the second region and configured for operably coupling to a bias voltage. Furthermore, the memory cell may include a plurality of dielectric layers, wherein each outer vertical surface of the second region has a dielectric layer of the plurality adjacent thereto.
Abstract:
Methods, apparatuses, and systems for in-or near-memory processing are described. Strings of bits (e.g., vectors) may be fetched and processed in logic of a memory device without involving a separate processing unit. Operations (e.g., arithmetic operations) may be performed on numbers stored in a bit-parallel way during a single sequence of clock cycles. Arithmetic may thus be performed in a single pass as numbers are bits of two or more strings of bits are fetched and without intermediate storage of the numbers. Vectors may be fetched (e.g., identified, transmitted, received) from one or more bit lines. Registers of a memory array may be used to write (e.g., store or temporarily store) results or ancillary bits (e.g., carry bits or carry flags) that facilitate arithmetic operations. Circuitry near, adjacent, or under the memory array may employ XOR or AND (or other) logic to fetch, organize, or operate on the data.
Abstract:
Methods, apparatuses, and systems for in-or near-memory processing are described. Spiking events in a spiking neural network may be processed via a memory system. A memory system may store data corresponding to a group of destination neurons. The memory system may, at each time interval of a SNN, pass through data corresponding to a group of pre-synaptic spike events from respective source neurons. The data corresponding to the group of pre-synaptic spike events may be subsequently stored in the memory system.
Abstract:
Systems, devices, and methods are described for millimeter wave device authentication. A system may include one or more access points. Each access point of the one or more access points is configured to extract, from one or more beam patterns generated via a client device, a beam feature associated with the client device. Each access point may also be configured to transmit the beam feature. The system may also include a server communicatively coupled to the one or more access points and including a database for storing known beam features. The server may be configured to receive the beam feature associated with the client device from at least one access point of the one or more access points. Also, the server may be configured to authenticate the client device in response to the received beam feature matching a known beam feature stored in the at least one database.