Abstract:
The present disclosure relates generally to power collection systems. In some power collection systems, such as a power collection system for a large solar panel array, the voltage of the collected power must be increased to medium voltage levels to allow for efficient power transmission from the solar panel array to the utility grid. In some power collection systems, medium voltage direct current (MVDC) power transmission is more efficient to collect power compared to medium voltage alternating current power transmission. Existing power collection systems suffer from a number of shortcomings and disadvantages. There remain unmet needs including decreased protection system response time, decreased system downtime, and increased system flexibility. For instance, circuit breaker and relay based protection schemes may not adequately protect collection system components in MVDC collection systems where fault currents increase rapidly. Furthermore, in some power collection systems, a single fault may shut down an entire power collection system until it can be repaired by a technician. There is a significant need for the unique apparatuses, methods, systems and techniques disclosed herein.
Abstract:
Unique systems, methods, techniques and apparatuses of a synchronous reluctance machine (SynRM) control are disclosed. One exemplary embodiment is a control device structured to operate a converter coupled to a synchronous reluctance machine and receive measurements of current. The device comprises a converter controller structured to detect a power supply restoration, operate the converter so as to transmit a series voltage vectors relative to the stationary reference frame to the stator of the synchronous reluctance machine, receive current measurements following the transmission of each of the voltage vectors, estimate the rotor position using the characteristics of the voltage vector and the received current measurements corresponding to at least one voltage vector, estimate the rotor speed using the characteristics of the voltage vectors and the received current measurements corresponding to at least two voltage vectors, and operate the converter so as to apply voltage to the stator.
Abstract:
An uninterruptible power supply system includes an AC input interface and a DC output interface, and a plurality of power supply paths coupled between the AC and DC interfaces. A first one of the power supply paths has a lower component count, whereas a second one of the power supply paths has a higher component count. At least one of the power supply paths is structured to supply DC electrical power to a power bus in the DC output interface at a varying voltage.