Abstract:
The present application is directed to a method of providing a coating to a surface of an optical element of a solar energy conversion system. The method comprises contacting the surface of the optical element with an aqueous coating composition comprising water and silica nanoparticles dispersed in the water and drying the coating composition to form a nanoparticle coating. The coating composition comprises an aqueous dispersion with a pH of less than 5 and an acid having a pKa of
Abstract:
The present application is directed to a method of providing a coating to a surface of an optical element of a solar energy conversion system. The method comprises contacting the surface of the optical element with an aqueous coating composition comprising water and silica nanoparticles dispersed in the water, and drying the coating composition to form a nanoparticle coating. The coating composition has a pH of the composition of 5 or higher. The coating composition comprises an aqueous continuous liquid phase; silica nanoparticles having a volume average particle diameter of 150 nanometers or less dispersed in the aqueous continuous liquid phase; and an organic polymer binder.
Abstract:
The present application is directed to a method of making an article. The method comprises coating a composition to a surface of a substrate. The coating composition comprises an aqueous continuous liquid phase, a silica nano-particle dispersed in the aqueous continuous liquid phase, and a polymer latex dispersion. The coated substrate is then heated to at least 300°C.
Abstract:
The present disclosure relates generally to anti-soiling compositions, methods of applying anti-soiling compositions, and equipment for applying anti-soiling compositions. In some embodiments, the present disclosure relates to a method of forming a durable coating on a glass substrate, comprising: (1) applying a coating composition to a glass substrate, the applied coating composition having a thickness of greater than 4 microns; the coating composition consisting essentially of about 0.25% to about 10% by weight of non-oxidizing nanoparticles, an acid, and water; (2) allowing the coating composition to remain on the glass substrate for at least an amount of time sufficient to permit at least some of the nanoparticles to bond to the glass substrate; (3) reducing the thickness of the coating composition to about 0.25 to 4 microns, and (4) evaporating at least some of the water to form the durable coating.
Abstract:
Superhydrophobic films (110) and methods of making such films are disclosed. More specifically, superhydrophobic films having microstructured (102) and nanofeatured (104) surfaces, constructions utilizing such films, and methods of making such films are disclosed.
Abstract:
The present application is directed to a method of providing a coating to a surface of an optical element of a solar energy conversion system. The method comprises coating the surface of the optical element with an aqueous coating composition comprising water and silica nanoparticles dispersed in the water; and drying the coating composition to form a nanoparticle coating. The silica nanoparticles comprise a polymer core surrounded by a shell comprising nonporous silica particles disposed on the polymer core.
Abstract:
A polymerizable composition comprises an alpha-olefin hydrocarbon monomer, an effective amount of an organometallic catalyst of a Group VIII metal, preferably Ni or Pd, and at least one of water and air. Novel catalysts for polymerizing alpha-olefin hydrocarbon monomers provide improved processes and products. Methods of the invention include polymerizing the composition in open air and in the presence of water to provide novel polymers.
Abstract:
A polymerizable composition comprises an alpha-olefin hydrocarbon monomer, an effective amount of an organometallic catalyst of a Group VIII metal, preferably Ni or Pd, and at least one of water and air. Novel catalysts for polymerizing alpha-olefin hydrocarbon monomers provide improved processes and products. Methods of the invention include polymerizing the composition in open air and in the presence of water to provide novel polymers.
Abstract:
The present application is directed to a method of providing a coating to a surface of an optical element of a solar energy conversion system. The method comprises coating the surface of the optical element with an aqueous coating composition comprising water and silica nanoparticles dispersed in the water; and drying the coating composition to form a nanoparticle coating. The silica nanoparticles comprise a polymer core surrounded by a shell comprising nonporous silica particles disposed on the polymer core.
Abstract:
The present disclosure generally relates to durable solar mirror films, methods of making durable solar mirror films, and constructions including durable solar mirror films. In some embodiments, the present disclosure relates to a solar mirror film comprising: a weatherable layer having a first major surface and a second major surface; regions of reflective material adjacent to the first major surface of the weatherable layer; and regions of the first major surface of the weatherable layer substantially lacking reflective material. In some embodiments, the present disclosure relates to a weatherable layer having a first major surface and a second major surface; wherein the first major surface includes a bulk region and an edge region; and a reflective material adjacent to the bulk region of the first major surface of the weatherable layer and substantially absent from the edge region.