Abstract:
In a submersible ultrasonic cleaning system for use in highly radioactive environments (e.g., cleaning radiated nuclear fuel assemblies), a bond between energy producing transducers and an radiating wall is strengthened with a polyurethane adhesive such as Permabond PT326, or 3M DP-190 adhesive. In various diagnostic tests, one or more of the transducers are operated in an energy-transmitting mode while one or more other transducers are operated in an energy- detecting mode to detect a weakened transducer/wall bond and/or acoustic conditions of the working fluid.
Abstract:
In a submersible ultrasonic cleaning system for use in highly radioactive environments (e.g., cleaning radiated nuclear fuel assemblies), a bond between energy producing transducers and an radiating wall is strengthened with a polyurethane adhesive such as Permabond PT326, or 3M DP-190 adhesive. In various diagnostic tests, one or more of the transducers are operated in an energy-transmitting mode while one or more other transducers are operated in an energy- detecting mode to detect a weakened transducer/wall bond and/or acoustic conditions of the working fluid.
Abstract:
Provided area cleaning apparatus (100) and an associated method of using the disclosed apparatus wherein the apparatus utilizes one or more nozzles (118) configured to provide a coherent stream (106) of one or more cleaning fluids for removing accumulated fine particulate matter, sludge, from surfaces (120). The nozzles may be sized, arranged and configured to provide coherent streams that maintain the initial stream diameter for a substantial portion of the maximum dimension of the space being cleaned. The apparatus and method are expected to be particularly useful in the cleaning of heat exchangers incorporating a plurality of substantially vertical and narrowly spaced tubes (126) by directing cleansing streams along a plurality of intertube spaces (127).
Abstract:
The present invention provides an improved scale conditioning composition and method that results in improved dissolution and disruption of tube scale, hardened sludge and other deposits composed primarily of highly densified magnetite such as those found in heat exchange vessels. After treatment with the advanced scale conditioning composition, these magnetite rich deposits are more easily removed using known and commercially available high pressure hydro-mechanical cleaning techniques. The present invention further provides effective cleaning in a short period of time and at relatively low temperatures, while reducing the amount of waste produced and reducing the resulting corrosion of carbon and low alloy steel components within the steam generator during the cleaning process.
Abstract:
A modular water purification system for a nuclear power plant includes a plurality of modules that may be selectively connected together directly or through the use of intermediary adapters in a plurality of arrangements. The modules may include a pump module, a FOSAR module, a particulate filtration module, a cross-flow filtration module, a degasification module, and/or a demineralization module, among other possible modules. The modules may have common interfaces so that they can be interconnected (directly or through intermediary adapters) in a variety of configurations for different purposes within the context of the nuclear power plant (e.g., filtering pool water; collecting large objects via vacuuming). Various modules may have form factors and/or mounting structures that are similar enough to the fuel assemblies of the plant that (1) the plant's fuel assembly handling equipment can grab, move, and reposition the modules, and/or (2) the modules may be stored in the fuel pool's storage rack.
Abstract:
A method for depositing zinc on the surfaces of a coolant loop of a nuclear power plant includes: providing within a portion of the coolant loop a treatment solution comprising zinc and optionally one or more noble metals and/or reducing agent(s); allowing the treatment solution to remain in the portion for a treatment period; and removing the treatment solution from the portion. According to various embodiments, an average temperature of the treatment solution over the course of the treatment period is less than 150ºC or 100ºC. According to various embodiments, an instantaneous temperature of the treatment solution remains below 150ºC or 100ºC throughout the treatment period. The zinc deposition treatment may be applied (1) before the plant is first put into power-generating operation or (2) during an outage following power-generating operation and optionally following a chemical decontamination to remove any oxides formed on surfaces of a coolant loop during prior power operation period(s).
Abstract:
A method for depositing zinc on the surfaces of a coolant loop of a nuclear power plant includes: providing within a portion of the coolant loop a treatment solution comprising zinc and optionally one or more noble metals and/or reducing agent(s); allowing the treatment solution to remain in the portion for a treatment period; and removing the treatment solution from the portion. According to various embodiments, an average temperature of the treatment solution over the course of the treatment period is less than 150ºC or 100ºC. According to various embodiments, an instantaneous temperature of the treatment solution remains below 150ºC or 100ºC throughout the treatment period. The zinc deposition treatment may be applied (1) before the plant is first put into power-generating operation or (2) during an outage following power-generating operation and optionally following a chemical decontamination to remove any oxides formed on surfaces of a coolant loop during prior power operation period(s).
Abstract:
An aqueous cleaning solution that has been previously used to remove deposits from a nuclear steam generator (or other vessel) is reused after being transferred from the steam generator into an external vessel. The spent cleaning solution may be reconditioned and reused in a further cleaning of the same steam generator or a different steam generator. The different cleanings being accomplished by the cleaning solution may be of the same type or different types (e.g., iron oxide removal and/or copper removal).
Abstract:
A passive assembly for operating two cleaning chambers using a single filtration system having a flow diverter assembly is disclosed. The flow diverter assembly is actuated by a fuel assembly when a fuel assembly is inserted into the cleaning chamber. The flow diverter assembly acts so that each cleaning chamber is supplied with suction flow whenever there is a fuel assembly in the cleaning chamber. When a cleaning chamber is empty, the flow diverter acts to block the suction flow from the filtration system, forcing suction flow through the opposite cleaning chamber. The flow diverter only provides suction head to a cleaning chamber when there is a fuel assembly in the cleaning chamber. When both cleaning chambers are empty, suction pressure from the pump increases to the point that the flow diverters in both chambers open sufficiently to maintain flow through the pumps and prevent the pumps from cavitating.
Abstract:
A system (10) for producing and maintaining high purity degassed layup water for use in a power plant system (1) during a layup period is disclosed. The liquid degassing system (10) includes a degassing assembly (140) for removing a predetermined amount of the undesired gases under vacuum pressure from the layup solution such that the amount of desired gases within the layup solution remains at or below standard values.