Abstract:
The invention relates to amplifiers and in particular, to a transimpedance amplifier for high rate applications. Disclosed is a two stage transimpedance amplifier having a first stage comprising an amplifier and a load and a second stage comprising an amplifier and a resistor. Negative feedback is provided through a feedback resistor. Only two voltage conversions occur which reduces phase distortion, as compared to three stage transimpedance amplifiers which perform 3 voltage conversions.
Abstract:
An optical signal generator is configured with an associated control system and driver configured to reduce speckle. Speckle reduction occurs by pulsing the drive signal between a first current level and a second current level. These pulses force the optical signal generator to introduce oscillations into the optical signal. The coherence of the emitted light is reduced during the period of oscillations in the optical signal, which reduces speckle. In one embodiment, the pulsing of the drive signal brings the drive signal down to a level near or below threshold, which in turn intermittently turns off the optical signal output. Returning the optical signal to a desired optical output intensity introduces the speckle reducing oscillation. The pulse frequency, and duty cycle is controlled by a duty cycle control signal to modulate overall optical power and adjust amount of despeckle.
Abstract:
A projection system with one or more light sources reduced power consumption and optional scanning capability is disclosed. A controller processes image data to generate light source control signals and pixel screen control signals which are coordinated to generate an image. Reductions in power consumption occur by matching the light output from the light source to the brightest pixel(s) in the pixel screen for a particular frame. By setting the light output level to an intensity or duration matched to only the maximum level corresponding to a image frame, power consumption is reduced as compared to an embodiment which sets the light source output to its maximum level or maximum duration. The pixel screen, which may be an LCD screen, sets pixel areas corresponding to the brightest pixels as transparent and other, less bring pixels on the pixel screen are set to appropriate levels of reduced transparency.
Abstract:
A projection system with one or more light sources reduced power consumption and optional scanning capability is disclosed. A controller processes image data to generate light source control signals and pixel screen control signals which are coordinated to generate an image. Reductions in power consumption occur by matching the light output from the light source to the brightest pixel(s) in the pixel screen for a particular frame. By setting the light output level to an intensity or duration matched to only the maximum level corresponding to a image frame, power consumption is reduced as compared to an embodiment which sets the light source output to its maximum level or maximum duration. The pixel screen, which may be an LCD screen, sets pixel areas corresponding to the brightest pixels as transparent and other, less bring pixels on the pixel screen are set to appropriate levels of reduced transparency.
Abstract:
An optical signal generator is configured with an associated control system and driver configured to reduce speckle. Speckle reduction occurs by pulsing the drive signal between a first current level and a second current level. These pulses force the optical signal generator to introduce oscillations into the optical signal. The coherence of the emitted light is reduced during the period of oscillations in the optical signal, which reduces speckle. In one embodiment, the pulsing of the drive signal brings the drive signal down to a level near or below threshold, which in turn intermittently turns off the optical signal output. Returning the optical signal to a desired optical output intensity introduces the speckle reducing oscillation. The pulse frequency, and duty cycle is controlled by a duty cycle control signal to modulate overall optical power and adjust amount of despeckle.
Abstract:
A method and apparatus configured to transmit module data between optic modules over a primary communication channel, such as an optic fiber configured to carry network data or outgoing data. A control center may send the module data, such as any type of DDMI data, over the optic fiber to control one or more aspects of the optic module system. The optic module may also be configured to send module data regarding any aspect of module status or operation, to a control center, via the optic fiber. Use of the primary communication channel, normally reserved for only network data, allow for module to module communication or module to control center communication without need of cumbersome two wire interface or supplement channels. Optic module data communication may occur concurrent with network data transmission. Optic module data back-up may occur via the optic channel to provide rapid re-load of important optic module data.
Abstract:
A method and apparatus is disclosed for optic signal power control to maintain a desired or optimum optic signal power level. During start-up, a default or target value from memory may be utilized to bias or otherwise control operation of an optic signal generator or driver. During operation, pre-stored values may continue to be utilized or an open loop or closed loop control system may be utilized. An open loop control system may incorporate a temperature module or a timer module to account for changes in environment or changes due to aging that may undesirably affect system operation. A closed loop control system may incorporate one or more feedback loops that generate a compensation value to account for detected changes. In one configuration one or more peak values of the actual optic signal, or a portion thereof, are detected and processed to generate the compensation signal.
Abstract:
The invention relates to amplifiers and in particular, to a transimpedance amplifier for high rate applications. Disclosed is a two stage transimpedance amplifier having a first stage comprising an amplifier and a load and a second stage comprising an amplifier and a resistor. Negative feedback is provided through a feedback resistor. Only two voltage conversions occur which reduces phase distortion, as compared to three stage transimpedance amplifiers which perform 3 voltage conversions.