Abstract:
A folded circularly symmetric illumination optic comprising a first light transfer mode having a first central refractive surface and a second central refractive surface, wherein one of the first and second central refractive surfaces has at least one peened feature; a second light transfer mode having a first refractive surface, a first TIR surface, a second TIR surface and a second refractive surface; a third light transfer mode having a first refractive surface, a first TIR surface and a second refractive surface, wherein the first TIR surface has at least one peening feature, and wherein the second refractive surface is conical; wherein the first TIR surface and second refractive surface of the second light transfer mode is coincident at least one point, wherein the second refractive surface of the third light transfer mode is coincident with the first TIR surface and second refractive surface of the second light transfer mode.
Abstract:
A light funnel collimator has a central lens surface and a back reflecting surface, shaped to provide a wider background beam and a narrower hotspot beam within but off- center of the wider beam. One of the beams is on-axis of the collimator, and the other beam is off-axis. The reflector is at least partly asymmetrical relative to the axis, and provides or contributes to the off-axis beam.
Abstract:
Some embodiments provide an illumination optical system. The optical system can include a first surface and a second surface. Each of the first and second surfaces can further comprises a multiplicity of corresponding Cartesian-oval lenticulations such that each lenticulation of the first surface focuses a source upon a corresponding lenticulation of the second surface and each lenticulati,on of the second surface focuses a target upon a corresponding lenticulation of the first surface.
Abstract:
A luminaire has a light source and a shell integrator. The shell integrator has a transparent dome over the light source, with inner and outer surfaces formed as arrays of lenslets. Each lenslet of the inner surface images the light source onto a respective lenslet of the outer surface, and each lenslet of the outer surface images the respective lenslet of the inner surface as a virtual image onto the light source. The dome may be substantially hemispherical. The light source and the integrator may be at an input of a collimator.
Abstract:
A cylindrical light source comprises multiple LEDs mounted on either the exterior or interior surface of the cylinder, with heat-sink fins respectively on its interior or exterior. The LEDs emit radially, but their emission is redirected along the cylinder axis by individual ellipsoidal reflectors.
Abstract:
The present embodiments provide systems, backlights, films, apparatuses and methods of generating back lighting Some embodiments provide backlight (1) that include a cavity with at least one interior light source (Is) and diffusely reflecting wall of high reflectivity, a top surface (3) with multiple intermittently spaced holes (3h) allowing exit of light generated by the light sources, and external collimators (3d) extending from each of the holes (3h) such that the external collimators (3d) spatially expand and angularly narrow the light exiting the holes (3h).
Abstract:
An optical device for coupling the luminous output of a light-emitting diode (LED) to a predominantly spherical pattern comprises a transfer section that receives the LED's light within it and an ejector positioned adjacent the transfer section to receive light from the transfer section and spread the light generally spherically. A base of the transfer section is optically aligned and/or coupled to the LED so that the LED's light enters the transfer section. The transfer section can comprises a compound elliptic concentrator operating via total internal reflection. The ejector section can have a variety of shapes, and can have diffusive features on its surface as well, including a phosphor coating. The transfer section can in some implementations be polygonal, V-grooved, faceted and other configurations.
Abstract:
A cylindrical light source comprises multiple LEDs mounted on either the exterior or interior surface of the cylinder, with heat-sink fins respectively on its interior or exterior. The LEDs emit radially, but their emission is redirected along the cylinder axis by individual ellipsoidal reflectors.
Abstract:
A waveguide version of a Kohler integrator is disclosed, utilizing geodesic lenses with a surface that can be mapped to a gradient-index Luneburg lens or to a nonfull-aperture Luneburg lens in such a way that the light paths in the gradient index lenses map into the geodesies of the surface, with the outer region of the gradient index lenses mapped into a flat surface. Arrays of these can be applied to lines of LEDs, as in CHMSLs, to mix light in intensity and in illumination as well as to avoid the deleterious effects of binning and burnout, or in multicolor arrays, to ensure complete chromatic mixing.
Abstract:
The present embodiments provide methods and systems to homogenize illumination on a target. Some embodiments provide rotational symmetric dual-reflector solar concentrators that include a concave primary reflector with an aim-direction directed toward the sun to receive optical radiation in a far-field angle within an angle of acceptance and redirect radiation upward and centrally generating flux concentration, a secondary reflector positioned coaxial with said primary reflector to receive said redirected radiation and redirect radiation downward and centrally generating flux concentration solar rays, and a central target zone receiving said concentrated solar rays, where cross sections of said primary and secondary reflectors both further comprise a multiplicity of segments that establish a correspondence between pairs of segments, each of said segments of said primary reflector such as to image said angle of acceptance onto said corresponding segment of said secondary reflector to image onto said target zone.