Abstract:
An insulation system for a cargo container (105), includes at least one wall (115, 120, 125, 130) having an exterior panel (205) and an interior liner (215), the exterior panel and the interior liner being substantially parallel to each other; a cavity disposed between the exterior panel and the interior liner, the cavity being coextensive with a surface area of each of the exterior panel and the interior liner; at least one vacuum insulation bag (210) disposed within the cavity (220), the at least one vacuum insulation bag (210) being configured for insulating the interior liner from the exterior panel.
Abstract:
The disclosure provides a bimodal container chassis of differing lengths in a gooseneck type as well as a flat beam type for supporting ISO and domestic containers and other cargo during highway as well as railway transit. The bimodal container chassis has a front end equipped with a king-pin for connecting to a tractor and a rear end equipped with braking and suspension components, axles, wheels and tires, which make the bimodal container chassis suitable for road transport. The bimodal container chassis has front and rear ends for connecting, and thereby suspending, the bimodal container chassis including but not limited to its payload between two rail bogies, which make the bimodal container chassis suitable for rail transit. The bimodal container chassis is constructed of sufficient strength and stiffness to withstand in-train forces of 400,000 pounds tension and compression, yet the bimodal container chassis is constructed of reasonable weight for being competitive and complying with bridge laws as well as other highway regulations.
Abstract:
A method for reducing air leakage from a refrigerated container includes positioning at least one inflatable device about a rear end of the refrigerated container; coupling the at least one inflatable device to one end of an elongated duct located within an interior space of the refrigerated container; coupling a second end of the elongated duct to an outlet port of the evaporator fan; circulating, via the evaporator fan, air through the interior space; and extracting the circulated air through the elongated duct and into the at least one inflatable device.
Abstract:
The disclosure provides a bimodal container chassis of differing lengths in a gooseneck type as well as a flat beam type for supporting ISO and domestic containers and other cargo during highway as well as railway transit. The bimodal container chassis has a front end equipped with a king-pin for connecting to a tractor and a rear end equipped with braking and suspension components, axles, wheels and tires, which make the bimodal container chassis suitable for road transport. The bimodal container chassis has front and rear ends for connecting, and thereby suspending, the bimodal container chassis including but not limited to its payload between two rail bogies, which make the bimodal container chassis suitable for rail transit. The bimodal container chassis is constructed of sufficient strength and stiffness to withstand in-train forces of 400,000 pounds tension and compression, yet the bimodal container chassis is constructed of reasonable weight for being competitive and complying with bridge laws as well as other highway regulations.