Abstract:
Systems, devices and methods are disclosed for limiting compression of a fracture imposed by a lag screw of a fixation system that includes a fixation device, a lag screw and a compression screw. The disclosed devices, systems and methods prevent over-compression of a fracture by a lag screw caused by over rotation of the compression screw. Specifically, implementations of a lag screw driver and a compression screw driver are provided whereby an engagement between the lag screw driver and compression screw driver prevents any further lateral movement of the lag screw, thereby providing a complete stop to further advancement of the lag screw and any additional compression.
Abstract:
A multi-layer, fiber-reinforced composite orthopaedic fixation device having a design selected based on a desired characteristic of the orthopaedic fixation device. The design may be selected according to a model of the device, the model defining design constraints, and the design may comprise a pattern of the fiber angle for each layer. The selection of a design may be analyzed using finite element analysis to determine whether the design will comprise the desired characteristic.
Abstract:
Systems, devices and methods are disclosed for limiting compression of a fracture imposed by a lag screw of a fixation system that includes a fixation device, a lag screw and a compression screw. The disclosed devices, systems and methods prevent over-compression of a fracture by a lag screw caused by over rotation of the compression screw. Specifically, implementations of a lag screw driver and a compression screw driver are provided whereby an engagement between the lag screw driver and compression screw driver prevents any further lateral movement of the lag screw, thereby providing a complete stop to further advancement of the lag screw and any additional compression.
Abstract:
A field generator for use in a surgical targeting system is disclosed. The field generator includes a mounting structure including elements that are configured to receive components of an electromagnetic field generator. The elements are disposed on the mounting structure at locations and orientations relative to each other. The field generator includes at least one covering formed over the mounting structure, wherein, in use, the locations and orientations of the elements relative to each other remain substantially unaltered after exposure to one or more sterilization processes.
Abstract:
An instrument for reduction of a bone fracture is disclosed. The instrument includes an orthopaedic surgical implant (112) , an implant member (190, 200, 270) , and a driving member (180, 210, 260) . The implant member (190, 200, 270) has a bone engagement portion (195, 203, 275) and a driven portion (197, 208, 278) . The driving member (180, 210, 260) cooperates with the driven portion (197, 208, 278) to move the implant member (190, 200, 270) and reduce the fracture . Also disclosed is a sliding compression orthopaedic implant (300) . The implant (300) comprises a first implant member (310) , said first implant member (310) having a transverse hole (311) ; and a second implant member (312) connected to said transverse hole (311) , said second implant member (312) having a shank (314) , and said shank (314) having a bone engagement portion (316) at a first end portion (318) and a sliding compression member (320) at a second end portion (322) .
Abstract:
A field generator for use in a surgical targeting system is disclosed. The field generator includes a mounting structure including elements that are configured to receive components of an electromagnetic field generator. The elements are disposed on the mounting structure at locations and orientations relative to each other. The field generator includes at least one covering formed over the mounting structure, wherein, in use, the locations and orientations of the elements relative to each other remain substantially unaltered after exposure to one or more sterilization processes.
Abstract:
A multi-layer, fiber-reinforced composite orthopaedic fixation device having a design selected based on a desired characteristic of the orthopaedic fixation device. The design may be selected according to a model of the device, the model defining design constraints, and the design may comprise a pattern of the fiber angle for each layer. The selection of a design may be analyzed using finite element analysis to determine whether the design will comprise the desired characteristic.
Abstract:
A controlled removable fracture-reducing assembly (10) for reducing a bone fracture. According to one embodiment of the present invention, a controlled removable fracture reducing assembly (10) includes an implant (12), a reducer (14), a buttress (16), and a locking device (18) that engage a proximal bone fragment (2) and a distal bone fragment (4). The implant (12) is secured to the distal bone fragment (4) by the locking device (18). The buttress (16) engages the implant (12) through an opening (30). The reducer (14) contains a compressing screw (24) that applies a force (60) on the buttress (16), reducing the fracture. According to another embodiment of the invention, the reducer (114) contains a cam mechanism (124) which applies a force (186) on the buttress (116), which does not engage the implant (112), that pushes the proximal bone fragment (102) to reduce the fracture. According to another embodiment of the invention, the reducer (214) is a jacking mechanism that pushes the proximal bone fragment (202) while pulling the implant (212) and distal fragment (204) to reduce the fracture.
Abstract:
A controlled removable fracture-reducing assembly (10) for reducing a bone fracture. According to one embodiment of the present invention, a controlled removable fracture reducing assembly (10) includes an implant (12), a reducer (14), a buttress (16), and a locking device (18) that engage a proximal bone fragment (2) and a distal bone fragment (4). The implant (12) is secured to the distal bone fragment (4) by the locking device (18). The buttress (16) engages the implant (12) through an opening (30). The reducer (14) contains a compressing screw (24) that applies a force (60) on the buttress (16), reducing the fracture. According to another embodiment of the invention, the reducer (114) contains a cam mechanism (124) which applies a force (186) on the buttress (116), which does not engage the implant (112), that pushes the proximal bone fragment (102) to reduce the fracture. According to another embodiment of the invention, the reducer (214) is a jacking mechanism that pushes the proximal bone fragment (202) while pulling the implant (212) and distal fragment (204) to reduce the fracture.