Abstract:
A method of making a coatable composition includes: providing a first composition comprising silica nanoparticles dispersed in an aqueous liquid vehicle, wherein the first composition has a pH greater than 6; acidifying the first composition to a pH of less than or equal to 4 using inorganic acid to provide a second composition; and dissolving at least one metal compound in the second composition to form the coatable composition. The silica nanoparticles have a polymodal particle size distribution, wherein the polymodal particle size distribution comprises a first mode having a first particle size in the range of from 8 to 35 nanometers, wherein the polymodal particle size distribution comprises a second mode having a second particle size in the range of from 2 to 20 nanometers, wherein the first particle size is greater than the second particle size. Coatable compositions, antistatic compositions, preparable by the method are also disclosed. Soil-resistant articles including the antistatic compositions are also disclosed.
Abstract:
Presently described are methods of making coating comprising aqueous fluoropolymer latex dispersions, aqueous fluoropolymer coating compositions, coated substrates, and (e.g. backside) films of photovoltaic cells. In one embodiment, the film comprises at least one fluoropolymer comprising repeat units derived from VF, VDF, or a combination thereof; inorganic oxide nanoparticles; and a compound that reacts with the repeat units derived from VF and VDF to crosslink the fluoropolymer and/or couple the fluoropolymer to the inorganic oxide nanoparticles. In another embodiment, the backside film comprises at least one fluoropolymer comprising repeat units derived from VF, VDF, or a combination thereof; and an amino-substituted organosilane ester or ester equivalent crosslinking compound.
Abstract:
A method of removing an unwanted constituent from a siliceous surface in which the method includes contacting the siliceous surface and the unwanted constituent with a multi-functional composition (e.g., a cleaning and protecting composition) that includes water, a hydrophilic silane, and a surfactant, and drying the surface, and compositions that include a hydrophilic silane, and a surfactant
Abstract:
The present disclosure relates generally to anti-soiling compositions, methods of applying anti-soiling compositions, and equipment for applying anti-soiling compositions. In some embodiments, the present disclosure relates to a method of forming a durable coating on a glass substrate, comprising: (1) applying a coating composition to a glass substrate, the applied coating composition having a thickness of greater than 4 microns; the coating composition consisting essentially of about 0.25% to about 10% by weight of non-oxidizing nanoparticles, an acid, and water; (2) allowing the coating composition to remain on the glass substrate for at least an amount of time sufficient to permit at least some of the nanoparticles to bond to the glass substrate; (3) reducing the thickness of the coating composition to about 0.25 to 4 microns, and (4) evaporating at least some of the water to form the durable coating.
Abstract:
The present disclosure generally relates to durable solar mirror films, methods of making durable solar mirror films, and constructions including durable solar mirror films. In one embodiment, the present disclosure relates to a solar mirror film comprising: a weatherable layer having a weatherable layer coefficient of hygroscopic expansion; a reflective layer having a reflective layer coefficient of hygroscopic expansion; and a compliant layer between the weatherable layer and the reflective layer, the compliant layer having a compliant layer coefficient of hygroscopic expansion that is between the weatherable layer coefficient of hygroscopic expansion and the reflective layer coefficient of hygroscopic expansion.
Abstract:
The present disclosure generally relates to durable solar mirror films, methods of making durable solar mirror films, and constructions including durable solar mirror films. In one embodiment, the present disclosure relates to a solar mirror film comprising: a multilayer optical film layer including having a coefficient of hygroscopic expansion of less than about 30 ppm per percent relative humidity; and a reflective layer having a coefficient of hygroscopic expansion.
Abstract:
Pressure sensitive adhesive tapes having flame retarding properties include a backing and a pressure sensitive adhesive layer. The pressure sensitive adhesive layer includes a (meth)acrylate-based block copolymer, and may also include at least 10% by weight of a halogen-free flame retarding agent. The adhesive layer may contain additional optional additives such as tackifying resins, plasticizers, and the like. The tapes are prepared by coating the flame retarding pressure sensitive adhesive onto the backing, either in solvent or by a solventless process.
Abstract:
Described herein is a method of coagulating a fluoropolymer latex comprising: providing an amorphous fluoropolymer latex; providing modified inorganic nanoparticles; and contacting the amorphous fluoropolymer latex with a sufficient amount of modified inorganic nanoparticles to coagulate the amorphous fluoropolymer latex.
Abstract:
The disclosure provides polymers having antimicrobial activity and articles with the polymers coated thereon. The polymers include a first pendant group comprising a first cationic component, a second pendant group comprising a nonpolar component, and a third pendant group comprising an organosilane component. The disclosure also includes methods of coating medical device articles and body fluid-receiving substrates with the antimicrobial polymers. The methods further include the use of adhesion-promoting components.
Abstract:
There is provided a coating composition comprising nonspherical nanoparticles; spherical nanoparticles; optionally hydrophilic groups and optional an surfactant; and a liquid medium comprising water and no greater than 30 wt% organic solvent, if present, based on the total weight of liquid medium, where at least a portion of the nonspherical nanoparticles or at least a portion of the spherical nanoparticles comprises functional groups attached to their surface through chemical bonds, wherein the functional groups comprise at least one group selected from the group consisting of epoxy group, amine group, hydroxyl, olefin, alkyne, (meth) acrylato, mercapto group, or combinations thereof. There is also provided a method for modifying a substrate surface using the coating composition and articles made therefrom.