Abstract:
The present invention relates to a device for providing a controllable pressure reduction between a first fluid conducting pipe (1) and a second fluid conducting pipe (2). The device (10) comprises a fluid inlet (11) in fluid communication with the first fluid conducting pipe (1), and a fluid outlet (12) in fluid communication with the second fluid conducting pipe (2). A S-shaped, spiral shaped, sinus shaped or the like fluid communicating, pressure reduction channel (14) is provided between the fluid inlet (11) and the fluid outlet (12).
Abstract:
The invention concerns a subsea system transporting fluid, wherein the subsea system comprises a first part having a flow path carrying a flow of fluid and at least a second part having a flow path provided for carrying fluid. The second part is temporarily being closed off from the flow path of the first part of the subsea system. The heat from the fluid transported in the first part of the subsea system is transferred to the second part by a heat conducting structure establishing a contact between the first and second part of the subsea system, to prevent the formation of hydrates in the second part of the subsea system.
Abstract:
There is provided a subsea system for increasing pressure and/or flow rate in a flow line, the subsea system being arranged in fluid communication with said flow line which receives fluid from at least one fluid source. The subsea system comprises at least one ompressor or pump and at least one subsea cooler which is arranged in the flow line in series with the at least one compressor. The subsea system further comprises a recirculation line which is confirgured such that at least a portion of the fluid flowing in the flow line downstream the at least one compressor and the at least one subsea cooler may be recirculated back to the flow line upstream the at least one compressor and the at least one subsea cooler such that the recirculating line can be used for capacity regulation of the at least one compressor and cleaning of the at least one subsea cooler. There is also provided a method for the removal of wax and/or sand and debris which has accumulated in at least one subsea cooler of a subsea system.
Abstract:
The subsea cooler (10) comprises an inlet manifold (16) and an outlet manifold (20) which are connectable to the subsea flow line and at least two cooling sections arranged in fluid communication with the inlet and the outlet of the subsea cooler. Each cooling section (15) includes a plurality of cooling pipes (22) which are configured such that they exchange heat energy with the surrounding sea water when the subsea cooler is in use. The subsea cooler (10) further comprising at least one distributing pipe (24) for each cooling section (15) extending between a primary distribution point (28) and respective cooling sections (15), the distributing pipes (24) being inclined relative to a horizontal plane when the subsea cooler is installed on the seabed such that the fluid flows downwards from the primary distribution point (28) toward the cooling sections (15).