Abstract:
A system for non-destructive non-contact quality inspection of dry electrode units of energy storage includes an eddy current-based inspection system having a conveyor belt, and a hollow dielectric shell. An outer surface of the shell has a plurality of spaced apart measuring transducers. Each of the transducers include a feed-through eddy current probe and at least two strap capacitors spatially linked therewith. In the related method, an electrode unit to be inspected is placed on the conveyor belt and enters and moves through the dielectric shell. The electrode unit is excited using a magnetic field from the eddy current probe as it passes by each of the plurality of transducers, where eddy currents at a plurality of frequencies are induced in the electrode unit. The modulation characteristics of impedance at a plurality of frequencies are measured by the probes, and from the impedance data it is determined whether the electrode unit is defective.
Abstract:
A method and related apparatus for non-contact measurement of electrical conductivity of powder-like materials using eddy currents includes the steps of placing a powder to be measured in a hollow dielectric sampling container, the sampling container disposed and freely axially moving within an outer dielectric housing. An eddy-current sensor including a winding is arranged on an outside surface of the housing. Current is forced in the winding to excite the powder to generate eddy currents. The introduced active resistance is measured at the eddy-current sensor and an electrical conductivity of the powder is determined using the measured active resistance. The powder is preferably vibration compacted and the density and electrical conductivity determined at a plurality of stages during the vibration compacting step.
Abstract:
A method and related apparatus for non-contact measurement of electrical conductivity of powder-like materials using eddy currents includes the steps of placing a powder (2) to be measured in a hollow dielectric sampling container (1), the sampling container disposed and freely axially moving within an outer dielectric housing (13) An eddy-current sensor including a winding (3) is arranged on an outside surface of the housing Current is forced in the winding to excite the powder to generate eddy currents The introduced active resistance is measured at the eddy-current sensor and an electrical conductivity of the powder is determined using the measured active resistance The powder is preferably vibration compacted and the density and electrical conductivity determined at a plurality of stages during the vibration compacting step.
Abstract:
A system for non-destructive non-contact quality inspection of dry electrode units of energy storage includes an eddy current-based inspection system having a conveyor belt, and a hollow dielectric shell. An outer surface of the shell has a plurality of spaced apart measuring transducers. Each of the transducers include a feed-through eddy current probe and at least two strap capacitors spatially linked therewith. In the related method, an electrode unit to be inspected is placed on the conveyor belt and enters and moves through the dielectric shell. The electrode unit is excited using a magnetic field from the eddy current probe as it passes by each of the plurality of transducers, where eddy currents at a plurality of frequencies are induced in the electrode unit. The modulation characteristics of impedance at a plurality of frequencies are measured by the probes, and from the impedance data it is determined whether the electrode unit is defective.