Abstract:
Disclosed herein is a method and apparatus for transmitting and receiving a scheduling request using a shared resource based filtering method in a radio communication system. The method for supporting scheduling request using shared resources at a base station including assigning each of one or more users to each of one or more subsets of Scheduling Request (SR) resources of a set consisting of a number, M, of SR resources, receiving scheduling request for the one or more users, determining SR resources used for the scheduling request among M SR resources, determining one or more users associated with the received scheduling request based on the assigned SR resources and the determined SR resources, and transmitting scheduling control information to determined one or more users.
Abstract:
The present application relates to a method in which a base station transmits signals to a relay node in a multiuser multi-antenna (MIMO) wireless communication system. More particularly, the method comprises the following steps: allocating one or more antenna ports to one or more relay nodes, respectively; mapping each of a plurality of downlink grant signals for said one or more relay nodes to a preset resource domain from among resource domains corresponding to one of the allocated antenna ports; mapping uplink grant signals or data signals for said one or more relay nodes to the resource domains corresponding to the allocated antenna ports; and transmitting the mapped signals to said one or more relay nodes.
Abstract:
The present invention relates to a method and device for receiving downlink signals in a wireless communication system. In more detail, the method for receiving downlink signals includes: receiving first control information for downlink scheduling through a first slot in a pair of resource blocks (RBs), the first control information including allocation information on a plurality of continuous RBs; receiving data from a second slot in a pair of RBs if the pair of RBs includes the first control information in the plurality of continuous RBs; and, if the pair of RBs outside the plurality of continuous RBs includes the first control information, attempting to detect second control information on uplink scheduling through a second slot of a pair of RBs.
Abstract:
A method for transmitting a relay node specific downlink physical control channel (R-PDCCH) at a base station in a wireless communication system is disclosed. More specifically, the method includes the steps of allocating one or more Resource Blocks (RBs) for the relay node specific downlink physical control channel, mapping the relay node specific downlink physical control channel to the one or more resource blocks, and transmitting the relay node specific downlink physical control channel to the relay node by using the one or more resource blocks, wherein the mapping step includes mapping the relay node specific downlink physical control channel along a frequency direction in a symbol belonging to a lowermost index, among the one or more resource blocks, and then mapping the relay node specific downlink physical control channel along the frequency direction in a symbol belonging to a next index.
Abstract:
The present invention relates to a wireless communication system, and more particularly, discloses a method and an apparatus for mode switching between a multi-cell coordinated communication mode and a single-cell MIMO communication mode. A method for dynamically switching a communication mode according to one embodiment of the present invention comprises: a step of generating and transmitting first feedback information in accordance with a first communication mode; a step of switching the first communication mode into a second communication mode interlocked with the first communication mode; and a step of generating and transmitting second feedback information in accordance with the second communication mode. The first communication mode is one of a multi-cell coordinated multi-point (CoMP) communication mode and a single-cell multi-input multi-output (MIMO) communication mode, and the second communication mode is the other of the multi-cell coordinated multi-point (CoMP) communication mode and the single-cell multi-input multi-output (MIMO) communication mode. The switching step can be performed without signaling from a base station.
Abstract:
A method for interference alignment in wireless network having 3 transmitters and 3 receivers which are equipped with M antennas is provided. The method comprising : transmitting, performed by each of the 3 transmitters, a pilot signal known to the 3 receivers; estimating, performed by each of the 3 receivers, each channel from transmitter; transmitting, performed by each of the 3 receivers, feedback information to target transmitter; and determining, performed by transmitter 2 and transmitter 3, a precoding vector; wherein a degree of freedom(DoF) of a transmitter 1 is (M/2 - a), a DoF of the transmitter 2 or the transmitter 3 is M/2.
Abstract:
Disclosed are a method and device for cooperatively sending and receiving power wirelessly. Wireless power charging coverage at the level of data signal transmission can be ensured by establishing one or more nodes for transmitting, to a specific terminal, a power transmission signal from any of a plurality of nodes which is (are) not engaged in data transmission, and by matching the phase synchronization of the power transmission signal between the one or more nodes and then transmitting, to the specific terminal, a power transmission signal of which the phase synchronization has been matched by means of the one or more nodes.
Abstract:
Disclosed herein is a radio communication system, and more particularly, to a method and apparatus for transmitting and receiving a signal on a backhaul link and an access link of a relay in a radio communication system supporting multiple carriers. The method for transmitting and receiving a signal in a relay node operating on multiple carriers includes receiving a control channel from a base station, determining the type of the control channel, determining an in-band operation mode or an out-band operation mode based on the determined type of the control channel, and transmitting and receiving the signal to at least one of the base station and a user equipment according to the determined operation mode. The multiple carriers include one or more in-band component carriers and one or more out-band component carriers.
Abstract:
According to one aspect of the present invention, a method in which a relay station transmits a sounding reference signal comprises: a step of receiving sounding reference signal parameters; a step of allocating a wireless resource using the sounding reference signal parameters; and a step of transmitting a sounding reference signal to a base station via the wireless resource, wherein the wireless resource indicated by the sounding reference signal parameters includes a symbol in which a guard interval for switching signal transmission and reception in a time domain is located.
Abstract:
The present invention relates to a method and to an apparatus for transmitting reference signals in a relay communication system. The method for transmitting reference signals through a type 2 relay node in a relay communication system comprises: a step in which a base station allocates a plurality of antenna ports in a mutually exclusive manner so that the antenna port of the base station and the antenna port of the peripheral relay node do not overlap each other; a step in which the base station and the relay node transmit reference signals to user equipment through the respective antenna ports mutually exclusively allocated; and a step in which the base station receives channel state information from the user equipment to obtain channel state information between the base station and the user equipment and channel state information between the relay node and the user equipment.