Abstract:
A confocal rainbow holographic imaging system and hologram fabrication method. The system employs a multi-spectral light source, a multiple grating volume hologram and a dual pass illumination and imaging pathway which provide for depth sectioning of an object, coverage of the full FOV of the system, and high lateral and depth resolution. Dual matched holograms are used to provide a high image contrast ratio. A method for fabricating the holograms employ a novel combination of design tools is also provided.
Abstract:
A confocal rainbow holographic imaging system and hologram fabrication method. The system employs a multi-spectral light source, a multiple grating volume hologram and a dual pass illumination and imaging pathway which provide for depth sectioning of an object, coverage of the full FOV of the system, and high lateral and depth resolution. Dual matched holograms are used to provide a high image contrast ratio. A method for fabricating the holograms employ a novel combination of design tools is also provided.
Abstract:
A volume holographic imaging system, apparatus, and/or method enables the projection of a two-dimensional (2D) slice of a four- dimensional (4D) probing object A 4D probing source object is illuminated to emit or scatter an optical field A holographic element having one or more recorded holograms receives and diffracts the optical field into a diffracted plane beam having spectral information A 4-ftelecentπc relay system includes a pupil filter on the relayed conjugate plane of the volume hologram and images the pupil of the volume hologram onto the front focal plane of the collector lens A collector lens focuses the diffracted plane beam to a 2D slice of the 4D probing source object The focused 2D slice is projected onto a 2D imaging plane The holographic element may have multiple multiplexed holograms that are arranged to diffract light from the corresponding slice of the 4D probing source object.