Abstract:
A radio frequency (RF) transmitter architecture includes at least one digital signal processing module. The at least one digital signal processing module is configurable to operate in at least a first mode wherein the at least one digital signal processing module is arranged to receive a digital input signal, select, from a reduced set of digital power amplifier (DPA) control values, a plurality of DPA control values based at least partly on the received digital input signal, perform interpolation of the plurality of selected DPA control values to determine a DPA control value from a non-reduced set of DPA control values representative of the received digital input signal, and output to at least one DPA component the determined DPA control value representative of the received digital input signal.
Abstract:
A radio frequency (RF) transmitter including at least one digital signal processing module is described. The at least one digital signal processing module is arranged to receive a complex digital input signal, successively apply pre-distortion to the received complex digital input signal with a progressively finer granularity, simultaneously progressively increase a sampling rate of the received complex digital input signal, and output a first, in-phase digital control word and a second, quadrature, digital control word for controlling at least one digital power amplifier component to generate an RF signal representative of the received complex digital input signal.
Abstract:
A phase lock loop utilizes a multiphase oscillator having a plurality of digital inputs. A plurality of DQ flip-flops, offset in time from each other generate a plurality of control signals to remove control phase information from the oscillator in digital form. A DQ flip-flop connected between any two digital inputs on the oscillator determines direction of the traveling wave. The direction and phase information address a look-up table to determine the current fractional phase of the oscillator. A divide by N circuit is used to reduce the oscillator frequency. A total phase indicator signal for the oscillator is determined using the current fractional phase. The total phase is compared to a reference phase to produce a control signal for making adjustments to the oscillator. In a feed-forward path, frequency dividers divide a high frequency signal to a lower desired frequency, thereby increasing phase resolution.
Abstract:
A method of determining a gain nonlinearity receives a phase difference signal and generates an output frequency based on the received phase difference signal. The method reconstructs a waveform by using the output frequency. The method preprocesses the phase difference signal to generate a comparison waveform. The method compares the reconstructed waveform to the comparison waveform and determines a gain nonlinearity based on the comparison between the reconstructed and comparison waveforms. A modulation system includes a voltage controlled oscillator for receiving a phase difference signal and generating an output frequency. The system further includes a waveform reconstructor and a comparator. The waveform reconstructor is coupled to the voltage controlled oscillator, and is for reconstructing a waveform based on the output frequency. The comparator is coupled to the waveform reconstructor, and is for comparing the output of the waveform reconstructor with the phase difference signal. The comparator is configured for determining a gain nonlinearity exhibited by the voltage controlled oscillator. Particular embodiments further include a compensator.
Abstract:
A low cost high-efficiency all-digital transmitter using all-digital power amplifiers ("DPA") and various mapping techniques to generate an output signal, which substantially reproduces a baseband signal at a carrier frequency. A baseband signal generator generates a baseband signal which is quantized by a signal processor using a quantization map. A DPA control mapper outputs control signals to phase selectors using the quantized signal and a quantization table. Each phase selector receives one of the control signals and outputs a waveform at a carrier frequency with a phase corresponding to the control signals, or an inactive signal. Each DPA in a DPA array has an assigned weight, receives one of the waveforms from the phase selectors, and outputs a power signal according to the weight of the DPA and the phase of the received waveform. The combined power signal substantially reproduces the baseband signal at the carrier frequency.
Abstract:
A multi-mode communications transmitter includes a signal decomposer that converts rectangular-coordinate in-channel and quadrature channel signals into polar-coordinate amplitude and angle component signals and forms first and second modulation signals. The signal decomposition process performed by the signal decomposer combines envelope-reduction and restoration (ERR) with filtering to reduce the bandwidths of the first and second modulation signals compared to the bandwidths of the unmodified amplitude and angle component signals. Reduction in signal bandwidths eases the design requirements of the electrical components needed to process and generate the signals applied to the power supply and radio frequency (RF) input ports of the multi-mode communications transmitter's power amplifier (PA). It makes the multi-mode communications transmitter more forgiving to gain and delay mismatches between the signals applied to the power supply and RF input ports of the PA, compared to conventional polar modulation transmitters.
Abstract:
A radio frequency (RF) transmitter has at least one digital signal processing module and at least one power amplifier module. The digital signal processing module includes at least one digital pre-distortion component arranged to receive at least one complex input signal, perform two-dimensional non-uniform mapping of the complex input signal to a first, in- phase, digital pre-distortion control word and a further, quadrature, digital pre-distortion control word, and output the in-phase and quadrature pre-distortion digital control words. The power amplifier module includes a first, in-phase, array of switch-mode power cells and at least one further, quadrature, array of switch-mode power cells. The two-dimensional non- uniform mapping has a pre-distortion profile at least partly based on an input/output relationship for the power amplifier module arranged to generate an analogue RF signal based at least partly on the in-phase and quadrature digital pre-distortion control words.