Abstract:
In various embodiments of the invention, a relay station in a wireless communications network may communicate with one or more subscriber stations at the same time and/or on the same frequency that the associated base station is communicating with another relay station in the same network. This contrasts with the conventional technique of devoting one time period or frequency exclusively to communications between the base station and the relay stations, and devoting another time period or frequency exclusively to communications between the relay stations and the subscriber stations.
Abstract:
An embodiment of the present invention provides a method, comprising using an adaptive codebook for beamforming for communications in wireless networks.
Abstract:
An embodiment of the present invention provides a method, comprising optimizing the location and configuration of relay stations in a wireless network that includes at least one base station and at least one relay station by taking into account at least one or more of the following: the distinct antenna heights of said at least one base station and said at least one relay station; the data dependency between said at least one relay station and said at least one base station; the service outage of said wireless network; and the network throughput of said wireless network.
Abstract:
In various embodiments of the invention, a relay station in a wireless communications network may communicate with one or more subscriber stations at the same time and/or on the same frequency that the associated base station is communicating with another relay station in the same network. This contrasts with the conventional technique of devoting one time period or frequency exclusively to communications between the base station and the relay stations, and devoting another time period or frequency exclusively to communications between the relay stations and the subscriber stations.
Abstract:
An embodiment of the present invention provides a method, comprising optimizing the location and configuration of relay stations in a wireless network that includes at least one base station and at least one relay station by taking into account at least one or more of the following: the distinct antenna heights of said at least one base station and said at least one relay station; the data dependency between said at least one relay station and said at least one base station; the service outage of said wireless network; and the network throughput of said wireless network.
Abstract:
A first NxM codebook of a first rank M may be used to generate a second Nx(N-M) codebook of a second rank (N-M). This second codebook is both orthogonal and complementary to the first codebook. In practice, this may reduce storage requirements in closed-loop MIMO beamforming, because the second codebook may be dynamically generated as needed by a base station and/or a mobile station. In some cases, a higher rank beamforming matrix or precoding matrix may be formed from a lower rank (e.g., one or two) beamforming matrix or precoding matrix. Also, a novel way to generate the rotation matrix is disclosed.
Abstract:
A method for determining orientation of an electronic device relative to another electronic device is described. The method includes synchronizing internal clock of a first electronic device with internal clock of a second electronic device using electromagnetic signals communicated between the first electronic device and the second electronic device, sending two or more sound waves from the second electronic device, receiving the two or more sound waves at the first electronic device, and calculating orientation of the first electronic device relative to the second electronic device based on a difference in time of arrival of the two or more sound waves at the first electronic device. The first electronic device and the second electronic device each have at least one transceiver configured to send and receive electromagnetic signals. The first electronic device has two or more acoustoelectric transducers and the second electronic device has one or more acoustoelectric transducer.
Abstract:
A data transmitting device predicts wireless channel conditions based on certain transmission parameters in which data packets are transmitted. The transmission parameters directly corresponding to wireless channel conditions. Based on the parameters, a video encoding bit rate at a video encoder of the transmitting device may be adjusted to support the wireless channel conditions.
Abstract:
An embodiment of the present invention provides a method, comprising using an adaptive codebook for beamforming for communications in wireless networks.
Abstract:
A base station may transmit at varied power levels. Subscriber stations receiving the power levels can transmit noise information back to the base station. As a result, co-channel interference can be determined from the varied power transmissions, either in the base station or in the subscriber station. In addition, in some embodiments, the transmissions may include different phases so that the phase of the co-channel interference may be determined as well.