Abstract:
A method in a wireless repeater selects one or more carriers out of all carriers for amplification and transmission. The non-selected carriers may be blocked to mitigate delay spread, uplink noise contribution or other effects on the repeater environment due to multiple repeaters. The carriers may be selected based on signal characteristics, signal usage, and/or other parameters.
Abstract:
A wireless repeater has a receiving antenna for receiving an input signal and a transmitting antenna for transmitting an amplified signal where the input signal is a sum of a remote signal and a feedback signal. The repeater includes an echo canceller receiving the input signal and generating an echo cancelled signal by estimating a feedback channel between the transmitting antenna and the receiving antenna and cancelling a feedback signal estimate from the input signal, an amplifier for amplifying the echo cancelled signal and providing the amplified signal to the transmitting antenna, and a variable delay element receiving the echo cancelled signal and introducing a first delay to the echo cancelled signal. The first delay is selected to optimize the estimation of the feedback channel, thereby optimizing the cancellation of the feedback signal. The delayed echo cancelled signal is coupled to the echo canceller as a reference signal for estimating the feedback channel.
Abstract:
A wireless repeater having a receiving antenna for receiving an input signal and a transmitting antenna for transmitting an amplified signal includes first and second front-end circuits and a repeater baseband block coupled between the first and second front-end circuits. The repeater baseband block includes a channel estimation block, an echo canceller implementing time domain echo cancellation, a variable gain stage controlled by a gain control block implementing digital gain control, a first variable delay element introducing a first delay before or after the echo canceller, a second variable delay element introducing a second delay to the output signal. The delayed output signal is coupled to the channel estimation block as a reference signal for estimating the feedback channel, to the echo canceller as a reference signal for estimating the feedback signal, and to the gain control block for monitoring the stability of the repeater.
Abstract:
A wireless repeater includes a receiver circuit implemented as an intermediate frequency (IF) subsampling receiver and a transmitter circuit implemented as a direct conversion (zero-IF) transmitter. The repeater further includes a reference receiver implemented as an IF subsampling receiver to sample a portion of the transmit signal prior to over-the-air transmission for use as the reference signal for channel estimation. Highly accurate channel estimation is obtained by using the reference signal from the reference receiver as the reference signal accounts for distortions in the transmitter circuit of the repeater. The repeater may include an echo canceller to cancel an estimated feedback amount from an input signal based on the channel estimation.
Abstract:
A wireless repeater includes an echo canceller to cancel an estimated feedback amount from an input signal and a delay to delay the input signal. The delay may be selected to decorrelate a remote signal from a signal to be transmitted by the repeater.
Abstract:
A method of controlling gains within a repeater may include determining a power control set point value which controls a transmit power of a mobile station (MS), and receiving a downlink signal from a base station transceiver system (BTS). The method may further include measuring a power of the received downlink signal, and computing a power level of a signal expected at the uplink of the repeater, wherein the computing is based on the measured downlink power and the power control set point value. Finally, the method may further include adjusting a gain of at least one amplifier based on the computed power level. An apparatus for controlling gains in a repeater may include a baseband processor for performing the above method.
Abstract:
In one embodiment, a device for constructing a pilot signal for use in a wireless repeater where the pilot signal is added to a transmit signal includes one or more pilot generators. Each pilot generator generates a carrier pilot signal associated with a single carrier of the transmit signal and the carrier pilot signals generated by the one or more pilot generators are summed to generate the pilot signal. Each of the one or more pilot generators includes a pilot symbol unit providing multiple data symbols having a predetermined data structure as the carrier pilot signal, a pilot scrambler, a filter, a pilot power determination unit, and a cyclic prefix insertion unit for inserting a cyclic prefix to the carrier pilot signal. In another embodiment, the pilot symbol unit providing multiple data symbols in frequency domain as the carrier pilot signal.
Abstract:
In one embodiment, a device for constructing a pilot signal for use in a wireless repeater where the pilot signal is added to a transmit signal includes one or more pilot generators. Each pilot generator generates a carrier pilot signal associated with a single carrier of the transmit signal and the carrier pilot signals generated by the one or more pilot generators are summed to generate the pilot signal. Each of the one or more pilot generators includes a pilot symbol unit providing multiple data symbols having a predetermined data structure as the carrier pilot signal, a pilot scrambler, a filter, a pilot power determination unit, and a cyclic prefix insertion unit for inserting a cyclic prefix to the carrier pilot signal. In another embodiment, the pilot symbol unit providing multiple data symbols in frequency domain as the carrier pilot signal.