Abstract:
A system for sensing and controlling concentration of magnetic particles in magnetorheological fluid comprising a wire coil and an AC voltage generator that, when energized, creates a magnetic flux field including a fringing field. When the fringing field extends through the magnetorheological fluid, the impedance in the circuit is proportional to the concentration of magnetic particles. A reference wire coil identical to the sensing wire coil is connected therewith. A demodulator is connected to each of the coils sends an impedance difference signal to a feedback controller connected to controllable dispensing apparatus for adding a calculated amount of replenishing fluid to the magnetorheological fluid. The system may be incorporated into an integrated fluid management module having apparatus for receiving and replenishing spent magnetorheological fluid and a sensor system in accordance with the present invention for use in a magnetorheological finishing system having a carrier wheel.
Abstract:
A system for magnetorheological finishing of a substrate. A spherical wheel meant for carrying a magnetorheological finishing fluid houses a variable-field permanent magnet system having north and south iron pole pieces separated by primary and secondary gaps with a cylindrical cavity bored through the center. A cylindrical permanent magnet magnetized normal to the cylinder axis is rotatably disposed in the cavity. An actuator allows rotation of the permanent magnet to any angle, which rotation changes the distribution of flux in the magnetic circuit through the pole pieces. Thus, one can control field intensity in the gaps by positioning the permanent magnet at whatever angle provides the required field strength. Because the field also passes above the pole pieces, defining a fringing field outside the wheel surface, the variable field extends through a layer of MR fluid on the wheel, thus varying the stiffness of the MR fluid as may be desired for finishing control.
Abstract:
A system for magnetorheological finishing of a substrate. An integrated fluid management module (IFMM) provides dynamic control of the rheological fluid properties of the MR fluid on a conventional MR finishing apparatus, and dispensing of the fluid to the wheel. A magnetically shielded chamber charged with MR fluid is in contact with the carrier wheel. A transverse line removes the spent MR fluid from the wheel as the ribbon leaves the work zone. Replenishment fluid is added to the chamber via a dripper, and preferably an electric mixer agitates MR fluid in the chamber. A grooved magnetically-shielded insert at the exit of the chamber forms a polishing ribbon on the carrier wheel as the wheel is turned. A sensor sensitive to concentration of magnetic particles provides a signal for control of MR fluid properties, particularly, water content in the MR fluid. Means is provided for cooling fluid within the chamber.