Abstract:
A method and system for providing a magnetic memory is described. The method and system include providing a plurality of magnetic storage cells, a plurality of word lines, and a plurality of bit lines. Each of the plurality of magnetic storage cells includes a plurality of magnetic elements and at least one selection transistor. Each of the plurality of magnetic elements is capable of being programmed using spin transfer induced switching by a write current driven through the magnetic element. Each of the plurality of magnetic elements has a first end and a second end. The at least one selection transistor is coupled to the first end of each of the plurality of magnetic elements. The plurality of word lines is coupled with the plurality of selection transistors and selectively enables a portion of the plurality of selection transistors.
Abstract:
A method and system for providing a magnetic memory is described. The method and system include providing a plurality of magnetic storage cells, a plurality of word lines, and a plurality of bit lines. Each of the plurality of magnetic storage cells includes a plurality of magnetic elements and at least one selection transistor. Each of the plurality of magnetic elements is capable of being programmed using spin transfer induced switching by a write current driven through the magnetic element. Each of the plurality of magnetic elements has a first end and a second end. The at least one selection transistor is coupled to the first end of each of the plurality of magnetic elements. The plurality of word lines is coupled with the plurality of selection transistors and selectively enables a portion of the plurality of selection transistors.
Abstract:
A three-axis magnetic sensor apparatus is described that is processed together into a single chip, with high performance, low cost, as well as small size. The three-axis magnetic sensor apparatus include a substrate, a two-axis magnetic sensing structure and another single-axis sensing structure. The two-axis sensing magnetic structure is consisted of two shielded Wheatstone bridge configurations in conjunction with an annular or semi annular magnetic flux-guiding structure (F1), and the single-axis sensing structure is consisted of a push-pull Wheatstone bridge in conjunction with a flux guide (F2) that can generate a fringe field in which its horizontal component is proportional to the vertical component of the external magnetic field. The two-axis magnetic sensing structure and the single-axis structure are processed together into a single chip, and can be used to measure respectively X, Y and Z components of external magnetic fields.