Abstract:
An automatic drilling fluid property analyzer including a housing having an inlet and an outlet; at least one valve disposed proximate the inlet and configured to open and close to provide a sample of fluid into the housing; an electronic control module configured to send a signal to the at least one valve; a probe assembly operatively coupled to the electronic control module, the probe assembly including an electrode probe having two electrodes and a probe gap therebetween; a viscometer sleeve disposed in the housing; a bob disposed in the sleeve, wherein an annulus is formed between the viscometer sleeve and the bob, and wherein at least one of the viscometer sleeve and the bob is configured to rotate, a motor operatively coupled to at least one of the viscometer sleeve and the bob; and a torque measuring device operatively coupled to the viscometer sleeve and the bob.
Abstract:
A method for measuring particle size distribution in a fluid material, involving inserting a laser beam instrument directly in the fluid flow line, wherein the laser beam instrument focuses a laser beam on a window directly coupled with the fluid flow line, wherein the fluid flow line comprises a fluid having a plurality of particles of different sizes, measuring a diameter of at least one particle in the fluid flow line by reflectance of the at least one particle as the at least one particle passes through the focused laser beam, and determining a duration of reflection of the at least one particle, and obtaining a count of particles in each of a pre-set range group of particle sizes, wherein the count of particles is used to determine particle size distribution in the fluid flow line.
Abstract:
An x-ray fluorescence apparatus for measuring properties of a sample fluid, the apparatus comprising a housing having an inlet and an outlet; a test chamber disposed within the housing, the test chamber comprising an injection port in fluid communication with the inlet; a slide disposed within the test chamber, the slide comprising a sample cavity; and a test port; an x-ray fluorescence spectrometer disposed within the housing, and at least one motor operatively coupled to the slide of the test chamber. Also, a method of testing a fluid, the method comprising injecting a fluid through an injection port of a test chamber into a sample cavity of a slide; moving the slide laterally within the test chamber to an intermediate position; moving the slide laterally within the test chamber to a test position; and actuating an x-ray fluorescence spectrometer to sample the fluid within the sample cavity when the slide is in the test position.
Abstract:
A pill for wellbore operations, that includes a base fluid; and at least two polymers that interact to form a gelatinous structure characterized as isolating and controllably transmitting hydrostatic pressure between a first wellbore fluid above the pill in a wellbore and a second wellbore fluid below the pill in the wellbore is disclosed.
Abstract:
An automatic drilling fluid property analyzer including a housing having an inlet and an outlet; at least one valve disposed proximate the inlet and configured to open and close to provide a sample of fluid into the housing; an electronic control module configured to send a signal to the at least one valve; a probe assembly operatively coupled to the electronic control module, the probe assembly including an electrode probe having two electrodes and a probe gap therebetween; a viscometer sleeve disposed in the housing; a bob disposed in the sleeve, wherein an annulus is formed between the viscometer sleeve and the bob, and wherein at least one of the viscometer sleeve and the bob is configured to rotate, a motor operatively coupled to at least one of the viscometer sleeve and the bob; and a torque measuring device operatively coupled to the viscometer sleeve and the bob.
Abstract:
An x-ray fluorescence apparatus for measuring properties of a sample fluid, the apparatus comprising a housing having an inlet and an outlet; a test chamber disposed within the housing, the test chamber comprising an injection port in fluid communication with the inlet; a slide disposed within the test chamber, the slide comprising a sample cavity; and a test port; an x-ray fluorescence spectrometer disposed within the housing, and at least one motor operatively coupled to the slide of the test chamber. Also, a method of testing a fluid, the method comprising injecting a fluid through an injection port of a test chamber into a sample cavity of a slide; moving the slide laterally within the test chamber to an intermediate position; moving the slide laterally within the test chamber to a test position; and actuating an x-ray fluorescence spectrometer to sample the fluid within the sample cavity when the slide is in the test position.
Abstract:
An automatic drilling fluid property analyzer including a housing having an inlet and an outlet; at least one valve disposed proximate the inlet and configured to open and close to provide a sample of fluid into the housing; an electronic control module configured to send a signal to the at least one valve; a probe assembly operatively coupled to the electronic control module, the probe assembly including an electrode probe having two electrodes and a probe gap therebetween; a viscometer sleeve disposed in the housing; a bob disposed in the sleeve, wherein an annulus is formed between the viscometer sleeve and the bob, and wherein at least one of the viscometer sleeve and the bob is configured to rotate, a motor operatively coupled to at least one of the viscometer sleeve and the bob; and a torque measuring device operatively coupled to the viscometer sleeve and the bob.
Abstract:
A method for measuring particle size distribution in a fluid material, involving inserting a laser beam instrument directly in the fluid flow line, wherein the laser beam instrument focuses a laser beam on a window directly coupled with the fluid flow line, wherein the fluid flow line comprises a fluid having a plurality of particles of different sizes, measuring a diameter of at least one particle in the fluid flow line by reflectance of the at least one particle as the at least one particle passes through the focused laser beam, and determining a duration of reflection of the at least one particle, and obtaining a count of particles in each of a pre-set range group of particle sizes, wherein the count of particles is used to determine particle size distribution in the fluid flow line.