Abstract:
This disclosure describes a graphics processing unit (GPU) pipeline that uses one or more shared arithmetic logic units (ALUs). In order to facilitate such sharing of ALUs, the stages of the disclosed GPU pipeline may be rearranged relative to conventional GPU pipelines. In addition, by rearranging the stages of the GPU pipeline, efficiencies may be achieved in the image processing. Unlike conventional GPU pipelines, for example, an attribute gradient setup stage can be located much later in the pipeline, and the attribute interpolator stage may immediately follow the attribute gradient setup stage. This allows sharing of an ALU by the attribute gradient setup and attribute interpolator stages. Several other techniques and features for the GPU pipeline are also described, which may improve performance and possibly achieve additional processing efficiencies.
Abstract:
This disclosure describes a graphics processing unit (GPU) pipeline that uses one or more shared arithmetic logic units (ALUs). In order to facilitate such sharing of ALUs, the stages of the disclosed GPU pipeline may be rearranged relative to conventional GPU pipelines. In addition, by rearranging the stages of the GPU pipeline, efficiencies may be achieved in the image processing. Unlike conventional GPU pipelines, for example, an attribute gradient setup stage can be located much later in the pipeline, and the attribute interpolator stage may immediately follow the attribute gradient setup stage. This allows sharing of an ALU by the attribute gradient setup and attribute interpolator stages. Several other techniques and features for the GPU pipeline are also described, which may improve performance and possibly achieve additional processing efficiencies.