Abstract:
This disclosure is directed to techniques for estimating signal-to-noise ratio (SNR) of signals received by a wireless communication device. The techniques take advantage of spatial receive diversity in a wireless communication device to achieve accurate estimates of SNR. In general, a spatial projection wiener filter function can be applied to incoming symbol estimates to support efficient computation of SNR. The estimated SNR can be used to produce power control commands for use in forward power control.
Abstract:
DSP architectures having improved performance are described. In an exemplary architecture, a DSP includes two MAC units and two ALUs, where one of the ALUs replaces an adder for one of the two MAC units. This DSP may be configured to operate in a dual-MAC/single-ALU configuration, a single-MAC/dual-ALU configuration, or a dual-MAC/dual-ALU configuration. This flexibility allows the DSP to handle various types of signal processing operations and improves utilization of the available hardware. The DSP architectures further includes pipeline registers that break up critical paths and allow operations at a higher clock speed for greater throughput.
Abstract:
A novel and improved method and apparatus for providing an interface to a digital wireless telephone system compatible with standard analog wire line telephones and analog wire line fax machines are disclosed. During a telephone call, a fax detector (11) monitors the incoming data for fax signals. If a fax is detected, the data processor (12) switches from processing the data as if it were voice to processing it as fax. In addition, the remote station is sent a signal notifying it to process the data as fax rather than voice. The fax detector (11) operates by detecting the preamble of a V.21 message, present at the beginning of every fax call. Energy is measured in both frequencies of the BFSK signals. A decision is made by analyzing these energies and locating a specific pattern which repeats itself a sufficient number of times.
Abstract:
DSP architectures having improved performance are described. In an exemplary architecture, a DSP includes two MAC units and two ALUs, where one of the ALUs replaces an adder for one of the two MAC units. This DSP may be configured to operate in a dual-MAC/single-ALU configuration, a single-MAC/dual-ALU configuration, or a dual-MAC/dual-ALU configuration. This flexibility allows the DSP to handle various types of signal processing operations and improves utilization of the available hardware. The DSP architectures further includes pipeline registers that break up critical paths and allow operations at a higher clock speed for greater throughput.