Abstract:
An exemplary self-destruct fuze delay for a submuntion includes a container filled with an activation fluid, a spring-loaded ampoule breaker to break the container upon deployment of the munition, a spring-loaded self-destruct firing pin to initiate a secondary detonator in close proximity to a primary detonator, and an interlock ball supported by the ampoule breaker that locks the self-destruct firing pin away from the secondary detonator. The ampoule breaker includes a piston and a timing ball, which accesses the activation liquid. The action of the activation liquid on the timing ball over time causes the timing ball to erode until it is forced into the container by the spring-loaded piston. The movement of the piston frees the interlock ball, allowing the spring-loaded self-destruct firing pin to move under force and impact or initiate the secondary detonator. Initiation of the secondary detonator destroys the primary detonator and, depending upon slide location, either sterilizes the submunition, or destroys the entire submunition.
Abstract:
An exemplary self-destruct fuze delay for a submuntion includes a container filled with an activation fluid, a spring-loaded ampoule breaker to break the container upon deployment of the munition, a spring-loaded self-destruct firing pin to initiate a secondary detonator in close proximity to a primary detonator, and an interlock ball supported by the ampoule breaker that locks the self-destruct firing pin away from the secondary detonator. The ampoule breaker includes a piston and a timing ball, which accesses the activation liquid. The action of the activation liquid on the timing ball over time causes the timing ball to erode until it is forced into the container by the spring-loaded piston. The movement of the piston frees the interlock ball, allowing the spring-loaded self-destruct firing pin to move under force and impact or initiate the secondary detonator. Initiation of the secondary detonator destroys the primary detonator and, depending upon slide location, either sterilizes the submunition, or destroys the entire submunition.
Abstract:
A drilling system (10) includes a drill string (15) extending through a BOP (40) and a drilling fluid (52) discharge coupling (72) mounted to the BOP. In addition, the drilling system includes a drilling fluid control system (100) configured to control a pressure or flow rate of a drilling fluid (52) flowing through the discharge coupling. The drilling fluid control system includes a flow rate and pressure regulating device (110), a feedback controller system (200) configured to operate the regulating device, and a first sensor (102) configured to measure an actual pressure or flow rate of the drilling fluid flowing through the discharge coupling.
Abstract:
A drilling system includes a drill string extending through a BOP and a drilling fluid discharge coupling mounted to the BOP. In addition, the drilling system includes a drilling fluid control system configured to control a pressure or flow rate of a drilling fluid flowing through the discharge coupling. The drilling fluid control system includes a flow rate and pressure regulating device, a feedback controller system configured to operate the regulating device, and a first sensor configured to measure an actual pressure or flow rate of the drilling fluid flowing through the discharge coupling.