Abstract:
Implementations of a discontinuous cable shield system and method include a shield having a multitude of separated shield segments dispersed along a length of a cable to reduce crosstalk between signals being transmitted on transmission lines, such as twisted wire pairs of a cable. The separated shield segments can serve as an incomplete, patch-worked, discontinuous, 'granulated' or otherwise perforated shield that can have effectiveness when applied as shielding for differential transmission lines such as with twisted wire pairs.
Abstract:
A communications cable having a plurality of twisted wire pairs each having a substantially uniform twist rate along the cable. An elongated shielding separator is positioned between the twisted wire pairs and physically separates them from one another. The shielding separator has a plurality of electrically non-conductive separator sections positioned between the twisted wire pairs and a plurality of electrically conductive separator sections arranged in an alternating pattern with the non-conductive separator sections along the shielding separator. Each of the conductive separator sections has one of a predetermined number of section lengths and is arranged along the shielding separator such that the conductive separator sections are substantially aperiodic with the twist rates of the twisted wire pairs. Optionally, the cable includes a continuous or discontinuous outer cable shielding system enclosing the discontinuous shielding separator and the plurality of twisted wire pairs.
Abstract:
A communication cabling includes a shielding separator having an elongated center member extending along a dimensional length, and a plurality of elongated dividing members each extending along the dimensional length and extending from the elongated center member. The dividing members may have at least a portion being of an electrically conductive material and others may have conductive material layers adjacent thereto.
Abstract:
A communications cable having a plurality of twisted wire pairs each having a substantially uniform twist rate along the cable. An elongated shielding separator is positioned between the twisted wire pairs and physically separates them from one another. The shielding separator has a plurality of electrically non-conductive separator sections positioned between the twisted wire pairs and a plurality of electrically conductive separator sections arranged in an alternating pattern with the non-conductive separator sections along the shielding separator. Each of the conductive separator sections has one of a predetermined number of section lengths and is arranged along the shielding separator such that the conductive separator sections are substantially aperiodic with the twist rates of the twisted wire pairs. Optionally, the cable includes a continuous or discontinuous outer cable shielding system enclosing the discontinuous shielding separator and the plurality of twisted wire pairs.
Abstract:
A communication cabling includes a shielding separator having an elongated center member extending along a dimensional length, and a plurality of elongated dividing members each extending along the dimensional length and extending from the elongated center member. The dividing members may have at least a portion being of an electrically conductive material and others may have conductive material layers adjacent thereto.
Abstract:
Implementations of a discontinuous cable shield system and method include a shield having a multitude of separated shield segments dispersed along a length of a cable to reduce crosstalk between signals being transmitted on transmission lines, such as twisted wire pairs of a cable. The separated shield segments can serve as an incomplete, patch-worked, discontinuous, 'granulated' or otherwise perforated shield that can have effectiveness when applied as shielding for differential transmission lines such as with twisted wire pairs.