Abstract:
There is presented a system and method for providing aircraft runway guidance. One delineated runway alert system for a host aircraft comprises: a processor for executing one or more instructions that implement one or more functions of the runway alert system; a data storage device including geographical runway information; a receiver for obtaining current location data of the host aircraft; an apparatus to provide a current heading of the host aircraft; a data entry device for receiving data indicating a desired runway; memory for storing the one or more instructions for execution by the processor to implement the one or more functions of the runway alert system to: receive the identity of the desired runway; provide an indicia of: the desired runway; and the position of the host aircraft in relation to the desired runway.
Abstract:
An aircraft control system is delineated for a host aircraft, the system comprising a processor for executing one or more instructions that implement one or more functions of the aircraft control system, a transceiver for transmitting information from and receiving information for the host aircraft, and memory for storing the one or more instructions for execution by the processor to implement the one or more functions of the aircraft control system to: receive from the transceiver information from another aircraft, and generate from the received information a signal for use in the host aircraft to control separation between the host aircraft and the other aircraft while the aircraft are within a predefined range of a location where the aircraft plan to land.
Abstract:
There is provided an avionics system that provides several avionics functions within a single LRU. In one embodiment, the system comprises a software-configurable RF assembly, one or more processor assemblies that are configured to provide multiple TAWS/TCAS/Mode S/ADS- B/ATC functions, interfaces to allow connections to aircraft electronics and data loaders, and multipurpose antennas. In one embodiment, a common processor architecture allows generic avionics processors to be configured to operate a number of TAWS/TCAS/Mode S/ADS-B/ATC functions without the need for multiple LRUs, and software-defined RF functions allow RF circuitry that interfaces to the processors to handle current and future communication needs.
Abstract:
There is presented a system and method for providing aircraft runway guidance. One delineated runway alert system for a host aircraft comprises: a processor for executing one or more instructions that implement one or more functions of the runway alert system; a data storage device including geographical runway information; a receiver for obtaining current location data of the host aircraft; an apparatus to provide a current heading of the host aircraft; a data entry device for receiving data indicating a desired runway; memory for storing the one or more instructions for execution by the processor to implement the one or more functions of the runway alert system to: receive the identity of the desired runway; provide an indicia of: the desired runway; and the position of the host aircraft in relation to the desired runway.
Abstract:
A delineated collision avoidance system may comprise a processor for executing one or more instructions that implement one or more functions of the collision avoidance system, a transceiver for transmitting information from and receiving information for the host aircraft, and memory for storing the one or more instructions for execution by the processor to implement the one or more functions of the collision avoidance system to: receive from the transceiver information from another aircraft, generate from the received information a track for the other aircraft, and determine whether the track will intersect within a predefined period of time a region of interest around the host aircraft. In a variation, the system may include a display and the memory may include instructions to: determine whether a predefined condition is satisfied and change an appearance of a symbol shown on the display to indicate that the predefined condition is satisfied.
Abstract:
There is provided an avionics system that provides several avionics functions within a single LRU. In one embodiment, the system comprises a software-configurable RF assembly, one or more processor assemblies that are configured to provide multiple TAWS/TCAS/Mode S/ADS- B/ATC functions, interfaces to allow connections to aircraft electronics and data loaders, and multipurpose antennas. In one embodiment, a common processor architecture allows generic avionics processors to be configured to operate a number of TAWS/TCAS/Mode S/ADS-B/ATC functions without the need for multiple LRUs, and software-defined RF functions allow RF circuitry that interfaces to the processors to handle current and future communication needs.
Abstract:
A delineated collision avoidance system may comprise a processor for executing one or more instructions that implement one or more functions of the collision avoidance system, a transceiver for transmitting information from and receiving information for the host aircraft, and memory for storing the one or more instructions for execution by the processor to implement the one or more functions of the collision avoidance system to: receive from the transceiver information from another aircraft, generate from the received information a track for the other aircraft, and determine whether the track will intersect within a predefined period of time a region of interest around the host aircraft. In a variation, the system may include a display and the memory may include instructions to: determine whether a predefined condition is satisfied and change an appearance of a symbol shown on the display to indicate that the predefined condition is satisfied.