Abstract:
A poly(phenylene ether) copolymer comprising about 5 to 40 mole percent repeat units derived from 2-phenylphenol and 60 to about 95 mole percent repeat units derived from 2,6-dimethylphenol, wherein the poly(phenylene ether) copolymer has a weight average molecular weight of at least 8,000 atomic mass units, is disclosed. Also disclosed is a method of preparing the poly(phenylene ether) copolymer, the method comprising oxidatively copolymerizing a monomer mixture comprising about 5 to 40 mole percent 2-phenylphenol and about 60 to about 95 mole percent 2,6-dimethylphenol in the presence of a solvent, molecular oxygen, and a polymerization catalyst comprising a metal ion and at least one amine ligand to form a solution of the poly(phenylene ether) copolymer in the solvent, wherein a ratio of total moles of 2-phenylphenol and 2,6-dimethylphenol to moles of metal ion is about 10:1 to about 1200:1.
Abstract:
A curable composition includes specific amounts of a ketone, a curable component, and particulate poly(phenylene ether) having a mean particle size of 3 to 12 micrometers and a particle size relative standard deviation of 20 to 60 percent. The composition has a low viscosity that facilitates wetting of reinforcing structures, and composites formed from the composition and a reinforcing structure cure to form a dielectric material with a low dielectric constant and loss tangent.
Abstract:
A poly(phenylene ether) copolymer of 2-methyl-6-phenylphenol and a dihydric phenol having an absolute number average molecular weight of 1,000 to 10,000 grams/mole is made by polymerization of 2-methyl-6-phenylphenol and a dihydric phenol in the presence of molecular oxygen, a polymerization catalyst comprising a metal ion and at least one amine ligand, and a solvent composed of at least 95 weight percent of a C 1 -C 3 alcohol selected from methanol, ethanol, 1-propanol, and 2-propanol. The poly(phenylene ether) copolymer can be, for example, a copolymer of 2-methyl-6-phenylphenol, 2,2-bis(3,5-dimethyl-4-hydroxyphenol)propane, and optionally 2,6-dimethylphenol. The poly(phenylene ether) copolymer finds utility in curable compositions, cured compositions, and articles.
Abstract:
A solution of a poly(phenylene ether) copolymer derived from 2-methyl-6-phenylphenol and a dihydric phenol in a non-halogenated solvent is useful in curable compositions. The copolymer has less than 0.5 weight percent monohydric phenols having identical substituents in the 2- and 6-positions of the phenolic ring, and an absolute number average molecular weight of 1,000 to 10,000 grams/mole. A solution of a poly(phenylene ether) copolymer derived from 2-methyl-6-phenylphenol, 2,6-dimethylphenol, and a dihydric phenol in a non-halogenated solvent is also useful in curable compositions. This copolymer has an absolute number average molecular weight of 1,000 to 5,000 grams/mole. A cured composition is obtained by heating curable compositions composed of the poly(phenylene ether) copolymer solutions and thermoset resins for a time and temperature sufficient to evaporate the non-halogenated solvent and effect curing. The compositions can be used for preparation of composites for printed circuit boards.
Abstract:
A phenylene ether oligomer is prepared by a process that includes partially converting 2,6-dimethylphenol to 3,3',5,5'-tetramethyl-4,4'-dihydroxybiphenyl and/or 3,3',5,5'-tetramethyldiphenoquinone, converting the residual 2,6 dimethylphenol to poly(2,6-dimethyl-1,4-phenylene ether) and any 3,3',5,5'-tetramethyl-4,4'-dihydroxybiphenyl to 3,3',5,5'-tetramethyldiphenoquinone, and reacting the poly(2,6-dimethyl-1,4-phenylene ether) and 3,3',5,5'-tetramethyldiphenoquinone to form the phenylene ether oligomer. The preparation can be conducted without isolation of intermediates.
Abstract:
An intumescent coating composition having improved char yield, while maintaining its physical, mechanical, and esthetic properties comprises (a) particulate poly(phenylene ether), wherein the mean particle size of the poly(phenylene ether) is 1 to 100 micrometers; (b) a film-forming binder; (c) an acid source; (d) a blowing agent; and (e) optionally, a carbon source other than the particulate poly(phenylene ether); wherein polyolefins, homopolystyrenes, rubber-modified polystyrenes, styrene-containing copolymers, and hydrogenated and unhydrogenated block copolymers of an alkenyl aromatic compound and a conjugated diene are all absent from the composition. A method of forming the intumescent coating composition comprises: mixing the particulate poly(phenylene ether), the filmforming binder, the acid source, and the blowing agent, wherein the particulate poly(phenylene ether) has a glass transition temperature, and wherein the mixing is carried out at a temperature below the glass transition temperature of the particulate poly(phenylene ether).