Abstract:
A frequency modulation (FM) transmitter implemented with a delta-sigma modulator and a phase-locked loop (PLL) is described. The delta-sigma modulator receives a modulating signal (e.g., an FM stereo multiplex (MPX) signal) and provides a modulator output signal. The PLL performs frequency modulation based on the modulator output signal and provides an FM signal. The FM transmitter may further include a gain/phase compensation unit and a scaling unit. The compensation unit may compensate the modulating signal for the closed-loop response of the PLL. The scaling unit may scale the amplitude of the modulating signal based on a gain to obtain a target frequency deviation for the FM signal. The PLL may operate in a transmit mode or a receive mode, may perform frequency modulation in the transmit mode, and may provide a local oscillator (LO) signal at a fixed frequency in the receive mode.
Abstract:
An FM radio with a wide frequency range operates in a cell phone without interfering with the VCO of the RF transceiver. The FM transceiver generates a VCO signal whose frequency varies by less than ±7% from the midpoint of a narrow first range. A synthesizer signal is generated by dividing the VCO frequency by a first divisor such that the synthesizer frequency varies over a lower frequency second range. The VCO frequency is also divided by a second divisor such that the synthesizer frequency varies over a third range. The upper limit of the second range falls at the lower limit of the third range. The lower limit of the second range is 85.5 MHz and the upper limit of the third range is 108.0 MHz. By also using a third divisor, a synthesizer signal with a range of 76-108 MHz is generated from the narrow first frequency range.
Abstract:
A cellular telephone includes cellular telephone circuitry and an FM receiver. An FM signal being received is downconverted by a mixer. The downconverted signal is processed to generate an FM signal that is supplied to a digital IF filter. If a blocker emitted by the cellular telephone circuitry would interfere with receiving of the FM signal due to interaction of an LO harmonic with the blocker if a conventional LO frequency were used, then a different LO frequency is used. Subsequent processing of the downconverted FM signal (for example, by a digital complex conjugate selector and an IF rotator) results in the signal supplied to the digital IF filter having the same center frequency as the digital IF filter despite the use of the different LO frequency. In some embodiments, the LO is shifted by different amounts depending on cellular telephone mode and on the FM signal.