Abstract:
Methods, an encoder and a decoder are configured for transition between frames with different internal sampling rates. Linear predictive (LP) filter parameters are converted from a sampling rate S1 to a sampling rate S2. A power spectrum of a LP synthesis filter is computed, at the sampling rate S1, using the LP filter parameters. The power spectrum of the LP synthesis filter is modified to convert it from the sampling rate S1 to the sampling rate S2. The modified power spectrum of the LP synthesis filter is inverse transformed to determine autocorrelations of the LP synthesis filter at the sampling rate S2. The autocorrelations are used to compute the LP filter parameters at the sampling rate S2.
Abstract:
An apparatus for processing an audio signal is provided. The apparatus comprises a signal processor (110; 205; 405) and a configurator (120; 208; 408). The signal processor (110; 205; 405) is adapted to receive a first audio signal frame having a first configurable number of samples of the audio signal, Moreover, the signal processor (110; 205; 405) is adapted to upsample the audio signal by a configurable upsampling factor to obtain a processed audio signal. Furthermore, the signal processor (110; 205; 405) is adapted to output a second audio signal frame having a second configurable number of samples of the processed audio signal. The configurator 120; 208; 408) is adapted to configure the signal processor (110; 205; 405) based on configuration information such that the configurable upsampling factor is equal to a first upsampling value when a first ratio of the second configurable number of samples to the first configurable number of samples has a first ratio value. Moreover, the configurator ( 120; 208; 408) is adapted to configure the signal processor (110; 205; 405) such that the configurable upsampling factor is equal to a different second upsampling value, when a different second ratio of the second configurable number of samples to the first configurable number of samples has a different second ratio value. The first or the second ratio value is not an integer value.
Abstract:
In a CELP coder, a combined innovation codebook coding device comprises a pre-quantizer of a first, adaptive-codebook excitation residual, and a CELP innovation-codebook search module responsive to a second excitation residual produced from the first, adaptive-codebook excitation residual. In a CELP decoder, a combined innovation codebook comprises a de-quantizer of pre-quantized coding parameters into a first excitation contribution, and a CELP innovation-codebook structure responsive to CELP innovation-codebook parameters to produce a second excitation contribution.
Abstract:
An apparatus for encoding comprises a first domain Converter (510), a switchable bypass (50), a second domain Converter (410), a first processor (420) and a second processor (520) to obtain an encoded audio signal having different signal portions represented by coded data in different domains, which have been coded by different coding algorithms. Corresponding decoding stages in the decoder together with a bypass for bypassing a domain Converter allow the generation of a decoded audio signal with high quality and low bit rate.
Abstract:
An audio encoder (100) adapted for encoding frames of a sampled audio signal to obtain encoded frames, wherein a frame comprises a number of time domain audio samples, comprising a predictive coding analysis stage (110) for determining information on coefficients of a synthesis filter and information on a prediction domain frame based on a frame of audio samples. The audio encoder (100) further comprises a frequency domain transformer (120) for transforming a frame of audio samples to the frequency domain to obtain a frame spectrum and an encoding domain decider (130). Moreover, the audio encoder (100) comprises a controller (140) for determining an information on a switching coefficient when the encoding domain decider decides that encoded data of a current frame is based on the information on the coefficients and the information on the prediction domain frame when encoded data of a previous frame was encoded based on a previous frame spectrum.
Abstract:
An audio encoder (10) adapted for encoding frames of a sampled audio signal to obtain encoded frames, wherein a frame comprises a number of time domain audio samples. The audio encoder (10) comprises a predictive coding analysis stage (12) for determining information on coefficients of a synthesis filter and a prediction domain frame based on a frame of audio samples. The audio encoder (10) further comprises a time-aliasing introducing transformer (14) for transforming overlapping prediction domain frames to the frequency domain to obtain prediction domain frame spectra, wherein the time-aliasing introducing transformer (14) is adapted for transforming the overlapping prediction domain frames in a critically-sampled way. Moreover, the audio encoder (10) comprises a redundancy reducing encoder (16) for encoding the prediction domain frame spectra to obtain the encoded frames based on the coefficients and the encoded prediction domain frame spectra.
Abstract:
A method and device for searching an algebraic codebook during encoding of a sound signal, wherein the algebraic codebook comprises a set of codevectors formed of a number of pulse positions and a number of pulses distributed over the pulse positions. In the algebraic codebook searching method and device, a reference signal for use in searching the algebraic codebook is calculated. In a first stage, a position of a first pulse is determined in relation with the reference signal and among the number of pulse positions. In each of a number of stages subsequent to the first stage, (a) an algebraic codebook gain is recomputed, (b) the reference signal is updated using the recomputed algebraic codebook gain and (c ) a position of another pulse is determined in relation with the updated reference signal and among the number of pulse positions. A codevector of the algebraic codebook is computed using the positions of the pulses determined in the first and subsequent stages, wherein a number of the first and subsequent stages corresponds to the number of pulses in the codevectors of the algebraic codebook.
Abstract:
A device and method for shaping noise during encoding of an input sound signal comprise pre-emphasizing the input signal or a decoded signal from a given sound signal codec to produce a pre-emphasized signal, computing a filter transfer function based on the pre-emphasized signal, and shaping the noise by filtering the noise through the transfer function to produce a shaped noise signal, wherein the noise shaping comprises producing a noise feedback. A device and method for noise shaping in a multilayer codec, including at least Layer 1 and 2, comprise: at an encoder, producing an encoded sound signal in Layer 1 including Layer 1 noise shaping, and producing a Layer 2 enhancement signal; at a decoder, decoding the Layer 1 encoded sound signal to produce a synthesis signal, decoding the enhancement signal, computing a filter transfer function based on the synthesis signal, filtering the enhancement signal through the transfer function to produce a Layer 2 filtered enhancement signal, and adding the filtered enhancement signal to the synthesis signal to produce an output signal including contributions from Layer 1 and 2.
Abstract:
The present invention relates to a method and device for improving concealment of frame erasure caused by frames of an encoded sound signal erased during transmission from an encoder (106) to a decoder (110), and for accelerating recovery of the decoder after non erased frames of the encoded sound signal have been received. For that purpose, concealment/recovery parameters are determined in the encoder or decoder. When determined in the encoder (106), the concealment/recovery parameters are transmitted to the decoder (110). In the decoder, erasure frame concealment and decoder recovery is conducted in response to the concealment/recovery parameters. The concealment/recovery parameters may be selected from the group consisting of: a signal classification parameter, an energy information parameter and a phase information parameter. The determination of the concealment/recovery parameters comprises classifying the successive frames of the encoded sound signal as unvoiced, unvoiced transition, voiced transition, voiced, or onset, and this classification is determined on the basis of at least a part of the following parameters: a normalized correlation parameter, a spectral tilt parameter, a signal-to-noise ratio parameter, a pitch stability parameter, a relative frame energy parameter, and a zero crossing parameter.
Abstract:
A stereo sound decoding method and system decode left and right channels of a stereo sound signal, using received encoding parameters comprising encoding parameters of a primary channel, encoding parameters of a secondary channel, and a factor β. The primary channel encoding parameters comprise LP filter coefficients of the primary channel. The primary channel is decoded in response to the primary channel encoding parameters. The secondary channel is decoded using one of a plurality of coding models, wherein at least one of the coding models uses the primary channel LP filter coefficients to decode the secondary channel. The decoded primary and secondary channels are time domain up-mixed using the factor β to produce the decoded left and right channels of the stereo sound signal, wherein the factor β determines respective contributions of the primary and secondary channels upon production of the left and right channels.