Abstract:
A method and apparatus for radial and axial hybrid bearings using gas sector(s) and magnetic sector(s) to increase bearing load capacity and stiffness, reduce bearing size and bearing span, and reduce cost comprises a stator and a rotor. An illustrative embodiment of a stator for use with a hybrid bearing may include one or more bearing pads positioned in a gas sector, and the stator may also include one or more magnetic sectors. The hybrid bearings may provide for the elimination of much of the magnetic bearing structure and associated power electronics using a pressurized gas/air bearing to react the bearing steady load while reserving the magnetic bearing and its controls to react dynamic loads and stabilize the bearing. In addition, the magnetic bearing controls for a hybrid bearing may be used to monitor bearing operating condition and provide communications of these conditions to the outside world.
Abstract:
A module flexible ligament damper includes an cylindrical inner structure with a central axis and an outer cylindrical surface. An outer casing with an inner cylindrical surface is positioned around the inner structure. A modular ligament with an inner flange and an outer flange connected by a web is positioned between the inner structure and the casing. The inner flange is connected to the inner structure and the outer flange is connected to the casing to support the inner structure within the casing, and to permit free orbital movement of the inner structure on a plane perpendicular to the axis of the inner structure. In one embodiment, the web is straight but does not intersect the axis of the inner structure for flexing in a radial direction. In other embodiments, the web is curved for radial flexing.
Abstract:
A packing case assembly (100) includes a packing cup (113a) configured to be disposed along a piston rod (102) of a reciprocating gas compressor system; and a packing ring set disposed in the packing cup, the packing ring set including multiple rings (114, 116, 118). The packing ring set is configured to be disposed circumferentially around a portion of the length of the piston rod. A backup packing ring (118) of the packing ring set includes a first region including a polymer, and a second region including a metal.
Abstract:
A trailing edge cooled bearing provides an illustrative embodiment of an apparatus for increasing heat transfer in various bearings, including but not limited to radial and axial tilting pad bearings. In the illustrative embodiment, the trailing edge cooled bearing may comprise at least one journal pad having a leading and trailing edge. The trailing edge may include a trailing edge face having one or more grooves formed therein. A spray bar may having one or more apertures formed therein may be positioned adjacent the trailing edge face to deliver fluid thereto.
Abstract:
A tilting pad bearing comprises a piston carrier ring that may include a plurality of voids spaced around the piston carrier ring, wherein a channel may be formed in a surface of the piston carrier ring opposite the plurality of voids. A carrier end plate may be positioned in the channel and secured to the piston carrier ring, wherein a recess may be formed in a top surface of the carrier end plate. A piston may be positioned in each void, wherein a bottom face of each piston is positioned adjacent the recess. The pistons may be substantially secured in the voids using a plurality of membranes, wherein one membrane corresponds to one piston and one void. Alternatively, the pistons may be formed in two pieces secured via a membrane. Each piston may be engaged with a bearing pad and/or interface member in a bearing pad carrier ring.
Abstract:
A bearing monitoring/analysis system may comprise an acoustic emission sensor positioned adjacent a fluid film bearing, component thereof, and/or adjacent structure such that the acoustic emission sensor may collect a signal from the bearing, wherein the signal may be analyzed to allow a user to gain information regarding the fluid film bearing.
Abstract:
A bearing with axial variations may include two or more different zones along its axial length either on the surface of a bore formed in the main body of the bearing with axial variations or on the outside diameter thereof. Each zone may include one or more radial holes in fluid communication with one or more grooves, respectively, wherein each groove may be positioned adjacent an interface between a rotating member and a non-rotating member.
Abstract:
Embodiments disclosed herein relate to bearing apparatuses including a bearing assembly having a continuous superhard bearing element including a continuous superhard bearing surface and a tilting pad bearing assembly. The disclosed bearing apparatuses may be employed in pumps, turbines or other mechanical systems. In an embodiment, the bearing apparatus includes a first and second bearing assembly. The first bearing assembly includes a first support ring and a plurality of tilting pads. Each tilting pad is tilted and/or tiltably secured relative to the first support ring. The second bearing assembly includes a continuous superhard bearing element. The continuous superhard bearing element includes a continuous superhard bearing surface facing the plurality of tilting pads and exhibits a maximum lateral width greater than about 2 inches.
Abstract:
An illustrative embodiment of a damper for use with rotary machinery may include a damper mass connected to an electronics housing via one or more piezo elements. The illustrative embodiment of the damper may include one or more electrical components wherein the electrical components, piezo elements, and/or damper mass may be tuned such that the damper is configured with an electrical resonance frequency corresponding to a mechanical resonance frequency present in a component of the rotary machinery. The piezo elements may be extension/retraction type or bending type, and they may have any orientation with respect to the rotational axis of the rotary machinery depending on the specific embodiment and/or application of the damper.
Abstract:
A countershaft as disclosed herein may include one or more hearing zones along its axial length. Each bearing zone may include one or more radial holes in fluid communication with one or more grooves, respectively, and one or more axial channels formed along the longitudinal length of the countershaft. Each groove may be positioned adjacent an interface between a rotating member and a non-rotating member and include one or more features therein, such as a profile and/or taper.