Abstract:
Methods and fluids are provided that include, but are not limited to, a drilling fluid comprising an aqueous base fluid and a fluid loss control additive that comprises at least one polymeric micro gel and a method comprising: providing an aqueous based treatment fluid comprising a fluid loss control additive that comprises at least one polymeric micro gel; placing the aqueous based treatment fluid in a subterranean formation via a well bore penetrating the subterranean formation; allowing the fluid loss control additive to become incorporated into a filter cake located on a surface within the subterranean formation; allowing the filter cake to be degraded; and producing hydrocarbons from the formation. Additional methods are also provided.
Abstract:
This invention relates to dispersions and powders of micro gel particles, and more specifically, at least in some instances, dispersions of micro gel particles formed from crosslinked water-soluble or swellable polymers, and methods of preparing such micro gel particle dispersions. In one aspect, the invention provides a method of preparing synthetic micro gel particles, comprising forming a reaction mixture by dissolving or swelling a water-soluble or water-swellable unsaturated monomer, unsaturated crosslinking agent, and radical initiator in a common solvent that is substantially inert toward chain transfer reactions, wherein the monomer and the crosslinking agent polymerize to form crosslinked polymer micro gel particles that are insoluble or at most swellable in the common solvent.
Abstract:
This invention discloses, compositions of aqueous fluids comprising one or more dispersion polymer(s), wherein the dispersion polymer comprises 96 to 100 mole percent of one or more nonionic monomer units and 0 to 4 mole percent of one or more cationic or anionic monomer units; and has a molecular weight of at least 100,000. The invention also discloses the method(s) of using one or more such dispersion polymer(s), comprising adding to or mixing with the aqueous fluid a friction-reducing amount of the polymer(s), before, during or after a turbulent flow is induced. Nonionic dispersion polymers consistently render substantially greater extents of friction reduction than their ionic counterparts. A dispersion polymer (formed by dispersion polymerization) provides up to four times as much friction reduction as the same polymer in solution when used at the same dosage. Moreover, unlike ionic dispersion polymers, nonionic dispersion polymers are intrinsically compatible with charged oilfield species such as multi-valence brine(s), quaternary amine-based corrosion inhibitors and biocides.