A FRAMEWORK FOR PERSONALIZATION OF CORONARY FLOW COMPUTATIONS DURING REST AND HYPEREMIA
    2.
    发明申请
    A FRAMEWORK FOR PERSONALIZATION OF CORONARY FLOW COMPUTATIONS DURING REST AND HYPEREMIA 审中-公开
    在休息和高血压期间进行冠状动脉计算的个性化框架

    公开(公告)号:WO2013138428A1

    公开(公告)日:2013-09-19

    申请号:PCT/US2013/030732

    申请日:2013-03-13

    Abstract: Embodiments relate to non-invasively determining coronary circulation parameters during a rest state and a hyperemic state for a patient. The blood flow in the coronary arteries during a hyperemic state provides a functional assessment of the patient's coronary vessel tree. Imaging techniques are used to obtain an anatomical model of the patient's coronary tree. Rest boundary conditions are computed based on non-invasive measurements taken at a rest state, and estimated hyperemic boundary conditions are computed. A feedback control system performs a simulation matching the rest state utilizing a model based on the anatomical model and a plurality of controllers, each controller relating to respective output variables of the coronary tree. The model parameters are adjusted for the output variables to be in agreement with the rest state measurements, and the hyperemic boundary conditions are accordingly adjusted. The hyperemic boundary conditions are used to compute coronary flow and coronary pressure variables.

    Abstract translation: 实施例涉及在休息状态和患者的充血状态期间非侵入性地确定冠状动脉循环参数。 在充血状态期间冠状动脉中的血流量提供对患者冠状动脉血管树的功能评估。 成像技术用于获得患者冠状动脉树的解剖模型。 休息边界条件是基于在静止状态下进行的非侵入性测量计算的,并且计算估计的充血边界条件。 反馈控制系统利用基于解剖模型的模型和多个控制器执行与休息状态匹配的模拟,每个控制器涉及冠状动脉树的相应输出变量。 调整模型参数以使输出变量与其余状态测量一致,并相应调整充电边界条件。 充血边界条件用于计算冠状动脉血流和冠状动脉压力变量。

    SYSTEM AND METHODS FOR INTEGRATED AND PREDICTIVE ANALYSIS OF MOLECULAR, IMAGING, AND CLINICAL DATA FOR PATIENT-SPECIFIC MANAGEMENT OF DISEASES
    3.
    发明申请
    SYSTEM AND METHODS FOR INTEGRATED AND PREDICTIVE ANALYSIS OF MOLECULAR, IMAGING, AND CLINICAL DATA FOR PATIENT-SPECIFIC MANAGEMENT OF DISEASES 审中-公开
    用于疾病特异性管理的分子,成像和临床数据的综合和预测分析的系统和方法

    公开(公告)号:WO2014008332A2

    公开(公告)日:2014-01-09

    申请号:PCT/US2013049205

    申请日:2013-07-03

    CPC classification number: G06F19/3437 G06F19/12 G16H50/50

    Abstract: A system operating in a plurality of modes to provide an integrated analysis of molecular data, imaging data, and clinical data associated with a patient includes a multi-scale model, a molecular model, and a linking component. The multi-scale model is configured to generate one or more estimated multi-scale parameters based on the clinical data and the imaging data when the system operates in a first mode, and generate a model of organ functionality based on one or more inferred multi-scale parameters when the system operates in a second mode. The molecular model is configured to generate one or more first molecular findings based on a molecular network analysis of the molecular data, wherein the molecular model is constrained by the estimated parameters when the system operates in the first mode. The linking component, which is operably coupled to the multi-scale model and the molecular model, is configured to transfer the estimated multi-scale parameters from the multi-scale model to the molecular model when the system operates in the first mode, and generate, using a machine learning process, the inferred multi-scale parameters based on the molecular findings when the system operates in the second mode.

    Abstract translation: 以多种模式操作以提供与患者相关联的分子数据,成像数据和临床数据的综合分析的系统包括多尺度模型,分子模型和连接部件。 多尺度模型被配置为当系统以第一模式操作时,基于临床数据和成像数据生成一个或多个估计的多尺度参数,并且基于一个或多个推断的多尺度模型生成器官功能模型, 系统在第二模式下运行时的缩放参数。 分子模型被配置为基于分子数据的分子网络分析产生一个或多个第一分子发现,其中当系统以第一模式操作时,分子模型受到估计参数约束。 可操作地耦合到多尺度模型和分子模型的连接部件被配置为当系统在第一模式下操作时将估计的多尺度参数从多尺度模型传递到分子模型,并且生成 ,使用机器学习过程,当系统在第二模式下操作时,基于分子发现的推断的多尺度参数。

Patent Agency Ranking